Self Studies

Coordinate Geometry Test - 24

Result Self Studies

Coordinate Geometry Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If point P divides the line joining the points $$(5, 0)$$ and $$(0, 4)$$ in the ratio $$2 : 3$$ internally, then the $$x$$-coordinate of $$P$$ is
    Solution
    The point $$P=\left( X,Y \right)$$ divides the line joining the points $$A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 5,0 \right)$$ 
    and $$B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 0,4 \right)$$  in the ratio $$m:n=2:3$$

    $$\therefore$$ The abscissa of $$P$$ is $$X=\dfrac { m{ x }_{ 2 }+n{ x }_{ 1 } }{ m+n } =\dfrac { 2\times 0+3\times 5 }{ 2+3 } =3$$
  • Question 2
    1 / -0
    If mid point of the line segment joining $$(2a, 4)$$ and $$(-2, 3b)$$ is  $$(1, 2a + 1)$$, then the values of  $$a$$ and $$b$$ are given by
    Solution
    Midpoint of any two points $$(p,q)$$ and $$(r,s)$$ is given by
    $$M=\left(\dfrac{p+r}{2},\dfrac{q+s}{2}\right)$$
    Given points are $$(2a, 4)$$ and $$(-2,3b)$$ and the midpoint is $$(1,2a+1)$$
    $$\therefore (1,2a+1)=\left(\dfrac{2a-2}{2},\dfrac{4+3b}{2}\right)$$
    $$\implies (1,2a+1)=\left(a-1,\dfrac{4+3b}{2}\right)$$
    Now, comparing both sides,
    $$ a-1=1$$ 
    $$\implies a=2$$ 

    and,
     $$\dfrac{4+3b}{2}=2a+1$$
    $$\Rightarrow 4+3b=4a+2$$
    $$\Rightarrow 3b=4a+2-4$$
    $$\Rightarrow 3b=4\times2-2$$
    $$\Rightarrow 3b=6$$
    $$\Rightarrow b=2$$

    Hence, $$a=b=2$$.
  • Question 3
    1 / -0
    The coordinates of $$A$$ and $$B$$ are $$(1, 2) $$ and $$(2, 3)$$. Find the coordinates of $$R $$, so that  $$\displaystyle \frac{AR}{RB} = \frac{4}{3}$$.
    Solution
    Let the coordinates of $$R$$ be $$(x, y)$$, then $$\displaystyle \frac{AR}{RB} = \frac{m_1}{m_2}= \frac{4}{3}$$
    Two points are $$A (1, 2) $$ and $$B (2, 3)$$
    We know that $$x$$ $$\displaystyle  =\frac{m_1x_2 + m_2 x_1}{m_1+m_2} = \frac{4.2 + 3.1}{4+3} = \frac{11}{7}$$
    $$\displaystyle y = \frac{m_1y_2 + m_2y_1}{m_1+m_2} = \frac{4.3 + 3.2}{4+3} = \frac{18}{7}$$
    Therefore, given point $$R$$ is $$\displaystyle \left ( \frac{11}{7} , \frac{18}{7} \right )$$.
  • Question 4
    1 / -0
    The co-ordinates of a point $$R$$ which divides the line joining  $$A(-3, 3)$$ and $$B(2, - 7)$$ internally in the ratio $$2 : 3$$ are
    Solution
    The given points are $$A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( -3,3 \right) , B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 2,-7 \right)$$
    Now, $$R=\left( X,Y \right)$$ divides the line segment AB internally in the ratio $$m:n=2:3$$.
    We know $$X=\dfrac { m{ x }_{ 2 }+n{ x }_{ 1 } }{ m+n }$$  and $$Y=\dfrac { m{ y }_{ 2 }+n{ y }_{ 1 } }{ m+n }$$
    $$\therefore  X=\dfrac { 2\times 2+3\times (-3) }{ 2+3 } =-\dfrac { 5 }{ 5 } =-1$$ and $$Y=\dfrac { 2\times (-7)+3\times 3 }{ 2+3 } =-\dfrac { 5 }{ 5 } =-1$$
    $$\therefore \left( X,Y \right) =\left( -1,-1 \right)$$
  • Question 5
    1 / -0
    $$M$$ is the midpoint of the straight line $$PQ$$. If $$P$$ is  $$(-2,  9)$$  and $$M$$ is (4, 3), find the coordinates of $$Q.$$
    Solution
    Let coordinates of $$Q$$ be $$(x, y)$$
    and midpoints are given as:
    $$\dfrac{x+(-2)}{2}=4
    \dfrac{y+9}{2}=3$$
    $$x-2=8\\ y+9=6$$
    $$\Rightarrow x=10\\ \Rightarrow y=-3$$
    $$\therefore (10,  -3)$$ are coordinates of $$Q$$.
  • Question 6
    1 / -0
    The Point $$A$$ on x-axis and point $$B$$ on y-axis and the mid-point of the line segment AB is shown in the figure is $$(4 - 3)$$. Then, the co-ordinates of A and B are

    Solution
    $$A= (x, 0), B= (0, y)$$
    $$4= \dfrac{x+0}{2}$$
    $$x= 8$$
    $$-3= \dfrac{0+y}{2}$$
    $$y= -6$$
    Hence $$A= (8,0)\ and\ B=(0,-6)$$ 
  • Question 7
    1 / -0
    If the line joining points $$(5, -6)$$ and $$(9, 8)$$ divided by a point R internally in $$5 : 6$$ ratio, then R =
    Solution
    The given points are $$A=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 5, -6 \right) , B=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 9,8 \right)$$
    Now, $$R=\left( X,Y \right)$$ divides the line segment AB internally in the ratio $$m:n=5:6$$.
    We know $$X=\dfrac { m{ x }_{ 2 }+n{ x }_{ 1 } }{ m+n }$$  and $$Y=\dfrac { m{ y }_{ 2 }+n{ y }_{ 1 } }{ m+n }$$
    $$\therefore  X=\dfrac { 5\times 9+6\times 5 }{ 5+6 } =\dfrac {7 5 }{ 11 }$$ and  $$Y=\dfrac { 5\times 8+6\times (-6 )}{ 5+6} =\dfrac { 4 }{ 11} $$
    Therefore, given point $$R$$ is $$\displaystyle \left ( \frac{75}{11} , \frac{4}{11} \right )$$.
  • Question 8
    1 / -0
    If (2, 1), (4, 5), (-1, - 3) are the mid points of the sides of a triangle, then the co-ordinates of its vertices are
    Solution
    Let $$A(x_1,y_1),\,B(x_2,y_2),\, C(x_3,y_3)$$ be the vertices of $$\triangle ABC$$
    Let D(2,1) , F(-1,-3) and E(4,5) be the mid points of AB,AC and BC.
    D and F are mid points pf ABC and AC
    $$\therefore DF\parallel BE$$
    E and F are mid points pf BC and Ac
    $$\therefore EF\parallel BD$$
    $$\therefore$$ DBEF is a parallelogram.
    The diagonals of a parallelogram bisect each other i.e, both diagonals have same mid point 
    i.e, Midpoint BF=Midpoint of DE
    $$\left( \dfrac { { x }_{ 2 }+(-1) }{ 2 } ,\dfrac { { y }_{ 2 }+(-3) }{ 2 }  \right) =\left( \dfrac { 2+4 }{ 2 } ,\dfrac { 1+5 }{ 2 }  \right) \\ \therefore \dfrac { { x }_{ 2 }+(-1) }{ 2 } =\dfrac { 2+4 }{ 2 }      \quad  \therefore {  x }_{ 2 }=7$$
    Similarly $$\dfrac { { y }_{ 2 }+(-3) }{ 2 } =\dfrac { 1+5 }{ 2 } \quad \therefore  { y }_{ 2 }=9\\ i.e,\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 7,9 \right) $$
    D is the mid point of AB
    $$D=(2,1)=\left( \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 }  \right) \\ \dfrac { { x }_{ 1 }+7 }{ 2 } =2\quad \quad \quad \therefore { \quad x }_{ 1 }=-3\\ \quad \quad  \quad \quad \quad \quad \quad \quad \quad \quad  \quad \quad i.e,({ x }_{ 1 },{ y }_{ 1 })=\left( -3,-7 \right) \\ \dfrac { { y }_{ 1 }+9 }{ 2 } =1\quad   \therefore { y }_{ 1 }=-7$$
    F is the midpoint of AC
    $$F=\left( -1,-3 \right) =\left( \dfrac { { x }_{ 1 }+{ x }_{ 3 } }{ 2 } ,\dfrac { { y }_{ 1 }+{ y }_{ 3 } }{ 2 }  \right) \\ -1=\dfrac { -3+{ x }_{ 3 } }{ 2 } \quad \therefore \quad { x }_{ 3 }=1\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad i.e,({ x }_{ 3 },{ y }_{ 3 })=(1,1)\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ -3=\dfrac { -7+{ y }_{ 3 } }{ 2 } \quad \therefore \quad { y }_{ 3 }=1$$
    $$\therefore$$ The vertices of triangle are $$=(-3,-7),(7,9),(1,1)$$

  • Question 9
    1 / -0
    The diagram is on a Cartesian plane.
    If the midpoints of PQ and RS are the same, the coordinates of S are:

    Solution
     $$P(-2, 6); Q(4, 2);R(2, 6)$$
    Mid-point pf PQ $$=\left ( \dfrac{-2+4}{2}, \dfrac{6+2}{2} \right )$$
    Let coordinates of S be (x, y) then, $$ \dfrac{x+2}{2}=1;   \dfrac{y+2}{2}=4$$
    $$x=0;  y=2$$
    $$(0, 2)$$ are the coordinates of $$S$$
  • Question 10
    1 / -0
    If the coordinates of the mid points of the sides of the triangle are (1, 2), $$(0,   -1)$$  and $$ (2,   -1)$$. Find the coordinates of its vertices.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now