Self Studies

Coordinate Geometry Test - 25

Result Self Studies

Coordinate Geometry Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the line segment joining $$\displaystyle (2, 3)$$ and $$\displaystyle(-1, 2)$$ is divided internally in the ratio $$3 : 4$$ by the line $$\displaystyle x+ 2 y=k,$$ then $$k$$ is :
    Solution
    If the line segment joining $$(x_{1},y_{1})$$ and $$(x_{2},y_{2})$$ is divide by internally in the ratio $$m_{1}:m_{2}$$ then the intersection point is
     $$x=\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}$$
    and
    $$y=\dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}$$
    so
    $$x=\dfrac{3\times(-1)+4\times2}{3+4}=\dfrac{5}{7}$$
    $$y=\dfrac{3\times(2)+4\times3}{3+4}=\dfrac{18}{7}$$
    this point $$\left(\dfrac{5}{7},\dfrac{18}{7}\right)$$ lies on given equation of line.
    satisfying the equation
     $$\dfrac{5}{7}+2\times\dfrac{18}{7}=k$$
    $$k=\dfrac{41}{7}$$
    Hence, option 'A' is correct.
  • Question 2
    1 / -0
    On the Cartesian plane, Q is the midpoint of the line segment PR.
    Find the value of x, y.

    Solution
    by mid point formula
     $$x=\dfrac{7+1}{2}=4$$
    $$\dfrac{y+4}{2}=3\Rightarrow y=2$$
    $$\therefore x=4, y=2$$
  • Question 3
    1 / -0
    In the diagram above, KN is a straight line. L and M are two points on KN such that  $$KL=LM$$  and  $$KM=MN$$. Find the coordinates of L.

    Solution
     Co-ordinates of M are
    $$\left ( \dfrac{0+12}{2},\dfrac{2+10}{2} \right )=(6,  6)$$
    Co-ordinates of L are 
    $$\left ( \dfrac{0+6}{2},\dfrac{2+6}{2} \right )=(3,  4)$$
  • Question 4
    1 / -0
    The coordinates of three consecutive vertices of a parallelogram are $$\displaystyle (1, 3), (-1, 2)$$ and $$\displaystyle (2, 5).$$ The coordinates of the fourth vertex are 
    Solution
    Let the parallelogram be $$ABCD$$ and $$O$$ is the midpoint of both diagonals $$AC$$ and $$DB$$ 
    So, $$AO=OC$$ and $$DO=OB$$.
    Let $$A(1,3),B(-1,2),C(2,5)$$ and $$D(x,y)$$
    As $$AO=OC$$, $$O$$ is mid point of $$AC$$,
    $$h=\cfrac { 1+2 }{ 2 } ,k=\cfrac { 3+5 }{ 2 } $$
    $$\Rightarrow h=3/2,\,k=4$$
    Hence, coordinate of $$O$$ is $$(3/2,4)$$.
    Now, $$BO=OD$$
    so by midpoint formula i.e,
    $$3/2 = (x+(-1))/2$$ and $$4 = (y+2)/2$$ from these equations we get calculate x and y
    So, the coordinates of $$D$$ are $$(4,6)$$.

  • Question 5
    1 / -0
    The co-ordinates of the points which divide the line segment joining the points $$(-2, 2)$$ and $$(6, -6)$$ in four equal parts is 
    Solution
    Let $$AB$$ be a line segment joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( -2,2 \right)$$ and $$B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 6,-6 \right)$$ which is divided into $$4$$ equal parts at $$P, Q$$ and $$R$$. 
    Then $$Q$$ will be the mid point of $$AB$$ 
    We shall apply the section formula for mid point as $$\left( x,y \right) =\left( \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right)$$  
    i.e. the co-ordinates of $$Q,$$ by mid point formula, is 
    $$Q\left( \dfrac { -2+6 }{ 2 }, \dfrac { 2-6 }{ 2 }  \right) =\left( 2,-2 \right)$$  
    Again $$P$$ will be the mid point of $$AQ$$ 
    i.e. the co-ordinates of $$P,$$ by mid point formula, is 
    $$P\left( \dfrac { -2+2 }{ 2 }, \dfrac { 2-2 }{ 2 }  \right) =\left( 0, 0 \right)$$
    Also $$R$$ will be the mid point of $$BQ$$ 
    i.e, the co-ordinates of $$R,$$ by mid point formula, is 
    $$R\left( \dfrac { 2+6 }{ 2 }, \dfrac { -2-6 }{ 2 }  \right) =\left( 4,-4 \right)$$ 
    $$\therefore$$ The co-ordinates of $$P,Q$$ and $$R$$ are $$(0,0), (2,-2)$$ and $$(4,-4) $$

  • Question 6
    1 / -0
    In the diagram, M is the midpoint of PQ
    Find the value of k.

    Solution
    Using mid-point formulae:
     $$\dfrac{1+k}{2}=2$$
    $$k=3$$
  • Question 7
    1 / -0
    The co-ordinates of the point A which divide the line segment $$GH$$ joining the points $$G(-4,12)$$ and $$H(11,-3)$$ internally in the ratio $$m: n=2:3$$ are
    Solution
    Given that the point $$A\left( x,y \right)$$  divides the line segment $$GH$$ joining the points 
    $$G\left( { x }_{ 1 },{ y }_{ 1 } \right) =(-4,12)$$ &  $$H\left( { x }_{ 2 },{ y }_{ 2 } \right) =(11,-3)$$ in the ratio $$m:n=2:3$$.
    We know that if a point $$A\left( x,y \right)$$ divides the line segment $$GH$$ joining the points 
    $$G\left( { x }_{ 1 },{ y }_{ 1 } \right)$$ & $$H\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ in the ratio $$m:n$$ then, by the section formula, 
    $$ x=\dfrac { m{ x }_{ 2 }+n{ x }_{ 1 } }{ m+n }$$  &  $$y=\dfrac { m{ y }_{ 2 }+n{ y }_{ 1 } }{ m+n }$$
    $$\therefore$$  The co-ordinates of A are 
    $$ x=\dfrac { 2\times \left( 11 \right) +3\times (-4) }{ 2+3 } =\dfrac { 10 }{ 5 }=2$$
    And $$y=\dfrac { 2\times \left( -3 \right) +3\times 12 }{ 2+3 } =\dfrac { 30 }{ 5 } =6$$
    $$ \therefore  A\left( x,y \right) =(2,6)$$ 
  • Question 8
    1 / -0
    The distance of the point $$Z (-2.4, -1)$$ from the origin is
    Solution
    Given that:
    The coordinates of a point Z are $$(-2.4,-1)$$. 

    To find out:
    The distance $$OZ$$, when $$O$$ is the origin. 

    We know that the distance of a point $$Z(x,y$$) from the origin $$O$$ is $${ d }_{ oz }=\sqrt { { x }^{ 2 }+{ y }^{ 2 } }$$
    $$\therefore  OZ=\sqrt { { \left( -2.4 \right)  }^{ 2 }+{ \left( -1 \right)  }^{ 2 } }$$
    $$=\sqrt{5.76+1}$$
    $$=\sqrt{6.76}$$
    $$=2.6\ units$$

    Hence, the distance of the point $$Z(-2.4,-1)$$ from the origin is $$2.6\ units$$.

  • Question 9
    1 / -0
    Coordinates of $$P$$ and $$Q$$ are $$(4,-3)$$ and $$(-1, 7)$$. The abscissa of a point $$R$$ on the line segment $$PQ$$ such that $$\dfrac{PR}{PQ}=\dfrac{3}{5}$$ is 
    Solution
    Given $$\dfrac{PR}{PQ}=\dfrac{3}{5}$$

    $$\Rightarrow \dfrac{PQ}{PR}=\dfrac{5}{3}$$......(1)

    Here $$PQ = PR + QR$$
    Substituting the value of $$PQ$$ in (1) and subtracting 1 from both sides

    $$\dfrac{PR+QR}{PR}-1=\dfrac{5}{3}-1$$

    $$\therefore \dfrac{QR}{PR}=\dfrac{2}{3}$$ 

    So the ratio at which $$R$$ divides $$PQ$$ is $$3:2$$

    We know that if a point $$R\left( x,y \right)$$ divides the line segment $$PQ$$ joining the points  $$P\left( { x }_{ 1 },{ y }_{ 1 } \right)$$ and $$Q\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ in the ratio $$m:n$$ then by the section formula.
      
    $$ x=\dfrac { m{ x }_{ 2 } +nx_1 }{ m+n } \quad \& \quad y=\dfrac {m{ y }_{ 2 } +n{y_1}}{ m+n } \quad $$
    As we are given the coordinates of $$P$$ and $$Q$$ and also $$\dfrac{QR}{PR}$$,
    $$x= \dfrac{3\times (-1)+2\times 4}{3+2}, y=\dfrac{3\times 7+2\times(- 3)}{3+2}$$
    $$\therefore x= 1, y=3$$

    So the abscissa of point R is 1
  • Question 10
    1 / -0
    The co-ordinates of the mid point of segment $$KR$$, where $$K(2.5, -4.3)$$ and $$R(-1.5, 2.7)$$, are
    Solution
    Given that $$KR$$ is a line segment joining the points $$K=(2.5, -4.3)$$ and $$R=(-1.5, 2.7)$$ 
    We know that the co-ordinate of the midpoint $$M$$ of a line joining the points $$(x_1, y_1)$$ and $$(x_2,y_2)$$ is given by 
    $$M=\left( \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 }, \dfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 }  \right)$$
    Let $$M_{KR}$$ be the midpoint of the line segment $$KR$$

     $${ \therefore \quad M }_{ KR }=\left( \dfrac {2.5+(-1.5)}{2}, \dfrac{-4.3+2.7}{2}  \right) =(0.5,-0.8)$$
    Hence, option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now