Self Studies

Coordinate Geometry Test - 27

Result Self Studies

Coordinate Geometry Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of the triangle whose vertices are $$(3,2), \ (-2, -3)$$ and $$(2,3)$$.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 });$$ $$({ x }_{ 2 },y_2)$$ and $$({ x }_{ 3 },{ y }_{ 3 })$$
    $$ = \left |\dfrac{ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3 (y_1 - y_2) } {2} \right |$$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,2) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (-2,-3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,3)$$ 
    in the area formula, we get

    Area = $$\left | \dfrac {3(-3-3) +(-2)(3-2) + 2 (2-(-3)) }{2}\right | = 5 $$ sq. unit
  • Question 2
    1 / -0
    Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points $$(-2, -1)$$, $$(1,0)$$, $$(4,3)$$ and $$(1,2)$$ meet.
    Solution
    Given are the coordinates of the four vertices of a parallelogram.
    To find out: The coordinates of the point of intersection of the two diagonals of the parallelogram.

    Let the vertices of the parallelogram be $$A (-2,-1), B(1,0),  C(4,3),  D(1,2) $$

    We know that, the diagonals of a parallelogram bisect each other.
    Hence, the diagonals AC and BD would meet at the midpoint of AC and BD.

    We also know that the coordinates of the midpoint of the line segment joining $$(x_1,y_1) \ and\ (x_2,y_2)$$ are: 

    $$P(x,y)=\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2}\right)$$

    Hence, mid point of AC $$= \left( \cfrac { -2+4 }{ 2 } ,\cfrac { -1+3}{ 2 }  \right) = (1,1) $$

    Hence, option B is correct.
  • Question 3
    1 / -0
    Find the coordinates of the point which divides the line segment joining the points $$(1, -3)$$ and $$(-3,9)$$ in the ratio $$1:3$$ internally.
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the line joining the

    points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y }_{ 2 })$$ in the

    ratio $$ m:n $$ internally, then $$(x,y) \equiv\displaystyle \left( \frac { m{ x }_{ 2 } + n{ x }_{ 1 } }{ m

    + n } ,\frac { m{ y }_{ 2 }  + n{ y }_{ 1 } }{ m + n }  \right) $$

    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (1,-3) $$ and $$({x }_{ 2 },{ y }_{

    2 }) = (-3,9) $$  and $$ m = 1, n = 3 $$ in the section formula, we get

    the point $$\displaystyle \left( \frac { 1(-3)  + 3(1) }{ 1 + 3} ,\frac { 1(9) + 3(-3)

    }{1 + 3}  \right) =\left( 0,0 \right) $$

  • Question 4
    1 / -0
    If $$(3, 4)$$ and $$(6, 5)$$ are the extremities of a diagonal of a parallelogram and $$(2, 1)$$ is its third vertex, then its fourth vertex is
    Solution
    Mid-point of $$(3,4)$$ and $$(6,5)$$ is $$\left( \cfrac { 9 }{ 2 } ,\cfrac { 9 }{ 2}\right) $$
    This is also mid point of diagonal joining third vertex $$(2,1)$$ and fourth vertex $$(x,y)$$
    Then,
    $$\cfrac { 9 }{ 2 } =\cfrac { x+2 }{ 2 } ,\cfrac { 9 }{ 2 } =\cfrac { y+1 }{ 2 } \\ \Rightarrow x=7,y=8$$
  • Question 5
    1 / -0
    Find the coordinates of the centre of a circle, if the coordinates of the end points of a diameter are $$(-3,8)$$ and $$(5,6)$$.
    Solution
    We know that, the centre of the circle lies at the midpoint of the diameter.

    Also, the midpoint of line segment joining two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is calculated using the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula, midpoint of the diameter $$= \left( \dfrac { -3 + 5}{ 2 } ,\dfrac { 8 + 6 }{ 2 }  \right) = (1,7) $$


    Hence, the coordinates of the centre are $$(1,7)$$
  • Question 6
    1 / -0
    The mid-point of a line segment is $$(5,8)$$. If one end point is $$(3,5)$$, find the second end point
    Solution
    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Let the other point be $$ (x,y) $$

    So, $$\left( \dfrac{3+x}{2},\ \dfrac{5+y}{2} \right)=(5, 8)$$

    $$ \Rightarrow  \dfrac {3 + x }{ 2 } = 5 $$ and  $$ \dfrac { 5 + y } {2} = 8 $$

    $$ \Rightarrow  x = 7 , y = 11 $$

    So, the second end point is $$ (7,11) $$
  • Question 7
    1 / -0
    Find the mid-point of AB where A and B are the points $$(-5, 11)$$ and $$(7,3)$$. 
    Solution
    Midpoint of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula, mid point of AB $$= \left( \dfrac { -5 + 7 }{ 2 } ,\dfrac { 11 + 3 }{ 2 } 

    \right)$$

    $$ = (1, 7) $$

  • Question 8
    1 / -0
    If two vertices of a parellelogram are $$(3,2)$$ and $$(-1,0)$$ and the diagonals intersect at $$(2, -5)$$, then the other two vertices are:
    Solution
    Let the given vertices be $$ A (1,-12)  B (5, -10)  C(a,b) ; D(x,y) $$

    We know that the diagonals of a parallelogram bisect each other. So,the midpoint of AC $$ = (2,-5) $$ and of BD
    $$ = (2,-5) $$. 
    Mid point of two points $$ { (x }_{ 1 },{ y }_{
    1 }) $$ and $$ { (x }_{ 2 },{ y }_{ 2 }) $$ is  calculated by the formula

    $$ \left( \frac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 }

    }{ 2 }  \right) $$
    Hence,
    midpoint of $$ AC = (2,-5) $$
    $$ => \left( \frac {1 + a }{ 2 } ,\frac { -12 + b }{ 2 }  \right) \quad = (2,-5) $$
    $$ => \frac {1 + a }{ 2 } = 2 ; \frac { -12 + b }{ 2 }

    = -5 $$
    $$ => 1+ a = 4 ; -12 + b = -10 $$
    $$ a = 3 ; b = 2 $$

    Hence, C $$ =(3,2) $$

    And, midpoint of $$ BD = (2,-5) $$
    $$ => \left( \frac {5 + x}{ 2 } ,\frac { -10 + y }{ 2 }  \right) \quad = (2,-5) $$
    $$ => \frac {5 + x }{ 2 } = 2 ; \frac { -10 + y }{ 2 }

    = -5 $$
    $$ => 5 + x = 4 ; -10 + y = -10 $$
    $$ x = -1 ; y = 0 $$

    $$ => D  =(-1,0) $$


  • Question 9
    1 / -0
    The area of a triangle is $$5$$. Two of its vertices are $$(2, 1)$$ & $$(3, -2)$$. The third vertex lies on $$y = x + 3$$. The third vertex can be
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Let the third vertex be $$(x,x+3)$$.
    Then by applying formula for area of triangle we get,
    $$\dfrac{1}{2}|(4x+5-9|=5$$
    Or 
    $$|4x-4|=10$$
    $$\Rightarrow |2x-2|=5$$
    $$\Rightarrow 2x-2=5$$
    $$\Rightarrow x=\dfrac{7}{2}$$ and 
    $$\Rightarrow 2x-2=-5$$
    $$\Rightarrow x=\dfrac{-3}{2}$$.
    Hence the points are $$\left(\dfrac{7}{2},\dfrac{13}{2}\right)$$ or $$\left(\dfrac{-3}{2},\dfrac{3}{2}\right)$$
  • Question 10
    1 / -0
    Find the area of the right-angled triangle whose vertices are $$(2, -2)$$ , $$(-2, 1)$$ and $$(5, 2).$$
    Solution

    Let the points be $$ A(2,-2), B(-2,1), C(5,2) $$.

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1} \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Hence, Length of side AB $$ = \sqrt { \left(-2-2 \right) ^{ 2 }+\left(1 + 2\right) ^{ 2 } } = \sqrt { 16+ 9 } = \sqrt { 25 }  = 5 $$ 

    Length of side BC $$ = \sqrt {\left(5 + 2\right) ^{ 2 }+\left(2-1\right) ^{ 2 } } = \sqrt { 49 + 1 } = \sqrt { 50} $$

    Length of side AC $$ = \sqrt { \left(5-2 \right) ^{ 2 }+\left(2+ 2\right) ^{ 2 } } = \sqrt { 9+16 } = \sqrt { 25 }  = 5 $$

    Since, $$ {(\sqrt { 50 }) }^{2} = { 5 }^{2} + { 5 }^{2} $$,
    $$ \Rightarrow {BC}^{2} ={AB}^{2} + {AC}^{2} $$
    Hence, the triangle has a right angle at $$A$$, with $$AB$$ and $$AC$$ as base and height.
    So, area of the triangle $$ABC = \cfrac {1}{2} \times base \times height = \cfrac {1}{2} \times 5 \times 5= \cfrac {25}{2}$$ sq  units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now