Self Studies

Coordinate Geometry Test - 29

Result Self Studies

Coordinate Geometry Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the midpoint of the line segment joining the points (-7, 14) and (k, 4) is (a, b) where 2a + 3b = 5. Find the value of k.
    Solution
    Midpoint of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    So,
    mid point of $$ (-7,14) ; (k,4) = (a,b) $$
    $$ =>  \left( \dfrac { -7+k}{ 2 } ,\dfrac { 14+4

    }{ 2 }  \right) \quad =\quad (a,b) $$

    $$ => a = \dfrac { -7+k}{ 2 } ; b = 9 $$

    Given, $$ 2a + 3b = 5 $$
    $$ 2 \times \dfrac { (-7+k)}{ 2 } + 3(9) = 5 $$
    $$ -7 + k + 27 = 5 $$
    $$ k = -15 $$
  • Question 2
    1 / -0
    The fourth vertex D of a parallelogram ABCD whose three vertices are A(-2, 3), B (6, 7) and C (8 , 3) is 
    Solution

    Let the fourth vertex D $$ = (x,y) $$


    We know that the diagonals of a parallelogram bisect each other. So,the

    midpoint of AC is same as the mid point of BD.


    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y

    }_{ 2 }) $$ is  calculated by the formula $$ \left( \frac { { x }_{ 1 }+{

    x }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    So, midpoint of $$ AC = $$ Mid point of $$ BD $$


    $$ => \left( \frac { -2+8 }{ 2 } ,\frac { 3+3 }{ 2 }  \right) \quad =

    \left( \frac { 6+x }{ 2 } ,\frac { 7 +y }{ 2 }  \right) \quad $$


    $$ => \left( \frac { 6 }{ 2 } ,\frac { 6 }{ 2 }   \right) \quad =

    \left( \frac { 6+x }{ 2 } ,\frac { 7 +y }{ 2 }  \right) \quad $$


    $$ => 6+x=6 ; 7 + y = 6 $$


    $$ => x = 0 ; y = -1 $$

    Hence, $$ D = (0,-1) $$

  • Question 3
    1 / -0
    If $$P\displaystyle \left ( \frac{a}{3},4 \right )$$ is the mid point of the line segment joining the point $$Q (-6, 5)$$ and $$R (-2, 3)$$, then the value of $$a$$ is:
    Solution
    Mid-point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x}_{ 2 } }{ 2 }, \dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Given, mid point of $$ Q(-6,5) ; R (-2,3) = P\left(\dfrac{a}{3},4\right) $$
    $$\Rightarrow \left( \dfrac { -6-2 }{ 2 } ,\dfrac { 5+3 }{ 2 }  \right) =\left(\dfrac{a}{3},4\right) $$
    $$\Rightarrow \dfrac{-8}{2} = \dfrac{a}{3} $$
    $$\Rightarrow -24 = 2a $$
    $$\Rightarrow  a = -12 $$

  • Question 4
    1 / -0
    If A(-1, 3), B(1, -1) and C(5, 1) are the vertices of a triangle ABC find the length of the median passing through the vertex A.
    Solution
    A

    median of a triangle is a line segment that joins the vertex of a triangle to

    the midpoint of the opposite side.

    Median through A passed through mid point of BC.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y

    }_{ 2 }) $$ is  calculated by the formula $$ \left( \frac { { x }_{ 1 }+{

    x }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$


    Using this formula,


    mid point of BC $$= \left( \frac { 1+5 }{ 2 } ,\frac { -1+1 }{ 2 } 

    \right) \quad =\quad (3,0) $$

    Distance between two points $$

    \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 }

    \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{

    x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Length of median through A $$ = \sqrt { \left( 3 + 1

    \right) ^{ 2 }+\left(0-3 \right) ^{ 2 } } = \sqrt { 16 + 9 } = \sqrt { 25 } = 5  units

    $$






  • Question 5
    1 / -0
    Length of the median from B on AC where A (-1, 3), B (1, -1), C (5, 1) is 
    Solution
    A

    median of a triangle is a line segment that joins the vertex of a triangle to

    the midpoint of the opposite side.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y

    }_{ 2 }) $$ is  calculated by the formula $$ \left( \frac { { x }_{ 1 }+{

    x }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$


    Using this formula,
    mid point of AC $$= \left( \frac { 1+5 }{ 2 } ,\frac { 3+1 }{ 2 } 

    \right) \quad =\quad (2,2) $$

    Distance between two points $$

    \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 }

    \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{

    x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Hence, length of median from B $$ = \sqrt { \left( 2-1

    \right) ^{ 2 }+\left( 2 + 1 \right) ^{ 2 } } = \sqrt { 1 + 9 } = \sqrt {10 }

    $$

  • Question 6
    1 / -0
    If (3, -4) and (-6, 5) are the extremities of the diagonal of a parallelogram and (-2, 1) is its third vertex, then its fourth vertex is 
    Solution
    The extremities of the diagonal are nothing but the opposite vertices of a parallelogram.
    Let the four vertices be $$ A( 3, -4) , B (-2, 1), C (-6, 5) and D(x,y) $$

    We know that the diagonals of a parallelogram bisect each
    other. So,the midpoint of AC is same as the mid point of BD.
    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y
    }_{ 2 }) $$ is  calculated by the formula $$ \left( \frac { { x }_{ 1 }+{
    x }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$
    So, midpoint of $$ AC = $$ Mid point of $$ BD $$
    $$ => \left( \frac { 3-6 }{ 2 } ,\frac { -4+5 }{ 2 }  \right) \quad =
    \left( \frac { -2+x }{ 2 } ,\frac { 1 +y }{ 2 }  \right) \quad $$
    $$ => \left( \frac { -3 }{ 2 } ,\frac { 1 }{ 2 }   \right) \quad =
    \left( \frac { -2+x }{ 2 } ,\frac { 1 +y }{ 2 }  \right) \quad $$
    $$ => -2 + x = -3 ; 1 + y = 1 $$
    $$ => x = -1 ; y = 0 $$
    Hence, $$ D = (-1,0) $$

  • Question 7
    1 / -0
    If the area of a triangle formed by the points (k, 2k) (-2, 6) and (3, 1) is 20 square units. Find the value of k.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, area of the triangle with given vertices
    $$ \left| \frac { k(6-1)-2(1-2k)+3(2k-6) }{ 2 }  \right|  = 20 $$

    $$ \Longrightarrow \left| \frac { 6k-k-2+4k+6k-18 }{ 2 }  \right| = 20 $$

    $$ \left| \frac { 15k-20 }{ 2 }  \right|  = 20 $$

    $$ \left| 15k-20 \right|  = 40 $$

    $$ 15k - 20 = 40 $$

    $$ 15k = 60 $$

    $$ k = 4$$

  • Question 8
    1 / -0
    The point which divides line segment joining the points (7, -6) and (3, 4 ) in ratio 1 : 2 internally lies in the 
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the line joining the

    points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y }_{ 2 })$$ internally in the

    ratio $$ m:n $$, then $$(x,y) = \left( \frac { m{ x }_{ 2 } + n{ x }_{ 1 } }{ m

    + n } ,\frac { m{ y }_{ 2 }  + n{ y }_{ 1 } }{ m + n }  \right) $$


    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (7,-6) $$ and $$({x }_{ 2 },{ y }_{

    2 }) = (3,4) $$  and $$ m = 1, n = 2 $$ in the section formula, we get

    the point $$ \left( \frac { 1(3)  + 2(7) }{ 1 +2 } ,\frac { 1(4) + 2(-6)

    }{1 + 2 }  \right) = \left( \frac {17}{3}, \frac{-8}{3} \right) $$


    Since, $$ x - $$ cordinate is positive and $$ y-$$ cordinate is negative, the point lies in the $$ IV $$ quadrant.

  • Question 9
    1 / -0
    The coordinates of the midpoint of line segment AB are $$(1, -2)$$, if the coordinates of A are $$(-3, 2)$$ then the coordinates of B are:
    Solution
    Given that, the coordinates of the midpoint of line segment $$AB$$ are $$(1,-2)$$. Also, coordinates of $$A$$ are $$(-3,2)$$.
    To find out: Coordinates of $$B$$.
    Let the coordinates of $$ B$$ be $$(a,b) $$
    We know that,
    Midpoint of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Hence, midpoint of $$ AB =  \left( \dfrac {-3 + a }{ 2 } ,\dfrac { 2 + b }{ 2 }  \right)
    = (1,-2) $$

    $$\Rightarrow \dfrac {-3 + a }{ 2 } = 1 ; \quad \dfrac { 2 + b }{ 2 } = -2 $$

    $$\Rightarrow -3 + a = 2 ; \quad 2 + b = -4 $$
    $$\therefore \  a = 5 ; \quad b = -6 $$

    Hence, the coordinates of $$B$$ are $$(5,-6) $$.
  • Question 10
    1 / -0
    The coordinates of $$A$$ for which area of triangle, whose vertices are $$A(a, 2a),\  B(-2, 6)$$ and $$C(3, 1)$$ is $$10$$ square units, are:

    Solution
    Given: Vertices of the triangle are $$A(a, 2a),\ B(-2, 6),\ C(3,1)$$

    The area of the triangle is $$10$$ square units.

    $$\Rightarrow \dfrac{1}{2}\bigg | a(6-1)+(-2)(1-2a)+3(2a-6) \bigg |=10$$

    $$\Rightarrow 5a-2+4a+6a-18=20$$

    $$\Rightarrow 15a=40$$

    $$\Rightarrow a=\dfrac{40}{15}=\dfrac{8}{3}$$

    $$\therefore $$ The coordinates of vertex $$A $$ are $$\displaystyle  \left ( \dfrac{8}{3}, \frac{16}{3} \right )$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now