Self Studies

Coordinate Geometry Test - 30

Result Self Studies

Coordinate Geometry Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mid-point of line segment joining the points (3, 0) and (-1, 4) is :
    Solution
    Mid-point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula, mid point of given points $$= \left( \dfrac { 3+(-1) }{ 2 } ,\dfrac { 0+4 }{ 2 } 

    \right) \quad =\quad (1,2) $$

  • Question 2
    1 / -0
    There are two point $$P(1,-4)$$ and $$Q(4,2)$$. Find a point X dividing the line PQ in the ratio $$1:2$$
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the

    line joining the points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y

    }_{ 2 })$$ internally in the ratio $$ m:n $$, then $$(x,y) = \left( \frac { m{

    x }_{ 2 } + n{ x }_{ 1 } }{ m + n } ,\frac { m{ y }_{ 2 }  + n{ y }_{ 1 }

    }{ m + n }  \right) $$

    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (1,-4) $$ and $$({x }_{ 2 },{ y }_{

    2 }) = (4,2) $$  and $$ m = 1, n = 2 $$ in the section formula, we get

    the point $$ \left( \frac { 1(4)  + 2(1) }{ 2 +1 } ,\frac { 1(2) + 2(-4)

    }{ 2 + 1 }  \right) =\left( 2,-2 \right) $$

  • Question 3
    1 / -0
    The co-ordinates of a point (x,y) which divides the straight line joining two points $$\displaystyle \left ( x_{1},y_{1} \right )$$ and $$\displaystyle \left ( x_{2} ,y_{2}\right )$$ internally in the ratio $$\displaystyle m_{1}$$ and $$\displaystyle m_{2}$$ are
    Solution

    This is the Section formula, i.e.  If a point divides the line segment $$AB$$ joining given two points in given m:n ratio internally, then by section formula, the co-ordinates of a point are given as


     $$=\left (\dfrac {mx_{2}+nx_{1}}{m+n},\dfrac {my_{2}+ny_{1}}{m+n}\right) $$


  • Question 4
    1 / -0
    The mid-point of a line segment is $$(-4,-2)$$ and one end of the line segement is $$(-6,4)$$. The co-ordinates of the other end are
    Solution
    The co-ordinates of the mid point of a line segment whose end points are $$(x_1,y_1) $$ and $$(x_2,y_2)$$ are given by $$(\cfrac{x_1+x_2}{2},\cfrac{y_1+y_2}{2})$$

    Substituting $$(x_1,y_1)=(-6,4)$$ and mid-point $$(-4,-2)$$.

    $$\Rightarrow (-4,-2)=(\cfrac{-6+x_2}{2},\cfrac{4+y_2}{2})$$

    Equating the $$x-$$coordinates,

    $$\Rightarrow -4=\cfrac{-6+x_2}{2}$$

    $$\Rightarrow -4\times 2=-6+x_2$$

    $$\Rightarrow x_2=6-8$$

    $$\Rightarrow x_2=-2$$

    Equating the $$y-$$coordinates

    $$\Rightarrow -2=\cfrac{4+y_2}{2}$$

    $$\Rightarrow -2\times 2=4+y_2$$

    $$\Rightarrow -y_2=4+4$$

    $$\Rightarrow y_2=-8$$

    The coordinates of the other end are $$(-2,-8)$$.
  • Question 5
    1 / -0
    Find the point, which bisects line segment joining the points $$P(-2,0)$$ and $$Q(2,5)$$
    Solution

     Given points are $$P(-2,0) = (x_1,y_1)$$ and $$Q(2,5)=(x_2,y_2)$$

    Formula for Midpoint $$=( \dfrac { { x }_{ 2 }+{ x }_{ 1 } }{ 2 } ,\dfrac { { y }_{ 2 }+{ y }_{ 1 } }{ 2 })$$

    Midpoint of $$PQ=\left (\dfrac {-2+2}{2},\dfrac{0+5}{2}\right)=\left (0,\dfrac {5}{2}\right) $$
  • Question 6
    1 / -0
    If the area of a triangle is $$68 $$ sq. units and the vertices are $$(6, 7), (-4, 1)$$ and $$(a, -9) $$ then the value of $$a$$ is 
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is:
    $$A= \left| \dfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (6,7) $$ ; $$({ x }_{ 2

    },{ y }_{ 2 }) = (-4,1) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (a,-9)$$ in the formula for area, we get:

    Area of triangle $$ = \left| \dfrac {  (6)(1+9)+(-4)(-9-7) + a(7-1) }{ 2 } 

    \right|  = 68 $$
    $$ \left| \dfrac { 60 + 64 + 6a }{ 2 }  \right|  = 68 $$
    $$ \dfrac{124 + 6a}{2}  = 68 $$
    $$  124 + 6a = 136 $$
    $$  6a = 12 $$
    $$ \implies a = 2 $$

  • Question 7
    1 / -0
    The co-ordinates of the point which divides the line joining $$(1,-2)$$ and $$(4,7)$$ internally in the ratio $$1:2$$ are
    Solution
    We know if a point divides the line segment $$AB$$ joining two points $$A\left(x_{1}, y_{1}\right)$$ and $$B\left(x_{2}, y_{2}\right)$$ in given ratio m:n internally, then by section formula, the cordinates of a point are given as
     $$=\left (\dfrac {mx_{2}+nx_{1}}{m+n},\dfrac {my_{2}+ny_{1}}{m+n}\right) $$


    Since the points $$(1,-2)$$  and $$(4,7)$$ divides internally in the ratio 

    $$1:2$$, then the coordinates of the point can be determined as follows:

    $$(x,y)=\left( \dfrac { 1\times 4+2\times 1 }{ 1+2 } ,\dfrac { 1\times 7+2\times -2 }{ 1+2 }  \right) =\left( \dfrac { 4+2 }{ 3 } ,\dfrac { 7-4 }{ 3 }  \right) =\left( \dfrac { 6 }{ 3 } ,\dfrac { 3 }{ 3 }  \right) =\left( 2,1 \right)$$ 
  • Question 8
    1 / -0
    The point which divides the line segment joining the points (3, 5) and (8, 10) internally in the ratio 2:3 is:
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the line joining the

    points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y }_{ 2 })$$ internally

    in the ratio $$ m:n $$, then $$(x,y) = \left( \frac { m{ x }_{ 2 } + n{ x }_{ 1

    } }{ m + n } ,\frac { m{ y }_{ 2 }  + n{ y }_{ 1 } }{ m + n } 

    \right) $$

    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (3,5) $$ and $$({x }_{ 2 },{ y }_{

    2 }) = (8,10) $$  and $$ m = 2, n = 3 $$ in the section formula, we get

    the point $$ \left( \frac { 2(8)  + 3(3) }{ 2 +3 } ,\frac { 2(10) + 3(5)

    }{ 2 + 3 }  \right) =\left( 5,7 \right) $$

  • Question 9
    1 / -0
    The point P divides the line joining the points (5, 0) and (0, 4) in the ratio 2 : 3 internally. The x co-ordinate of P is
    Solution

  • Question 10
    1 / -0
    $$L, M$$ and $$N$$ are the midpoints of the sides $$BC, CA$$ and $$AB$$ respectively of triangle $$ABC$$. If the vertices are $$A(3,-4), B(5,-2)$$ and $$C(1,3)$$ the area of $$\displaystyle \triangle LMN$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$

    Let $$(x_1,y_1)$$ $$=(3,-4)$$, $$(x_2,y_2)$$ $$=(5,-2)$$ and $$(x_3,y_3)$$ $$=(1,3)$$

    Area of $$\displaystyle \Delta ABC=\dfrac{1}{2}\left [ 3\left ( -2-3 \right )+5\left ( 3+4 \right )+1\left ( -4+2 \right ) \right ]$$ 

    $$=\dfrac{1}{2}\left ( -15+35-2 \right )$$

    $$=9$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta LMN=\frac{1}{4}\times 9=2.25$$ square units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now