Let $$A(2,-5),\ B(-3,5) \text{ and } P$$ be three points
Let the coordinates of the point $$P$$ be $$(x,y)$$
Given that, $$AP=\dfrac{3}{5}\times AB$$
$$\therefore \ \dfrac{AP}{AB}=\dfrac{3}{5}$$
$$\Rightarrow \dfrac{AB}{AP}=\dfrac{5}{3}$$
$$\Rightarrow \dfrac{AP+BP}{AP}-1=\dfrac{5}{3}-1$$
$$\Rightarrow \dfrac{BP}{AP}=\dfrac{2}{3}$$
$$\therefore \ \dfrac{AP}{BP}=\dfrac{3}{2}$$
Hence, point $$P$$ divides the line segment $$AB$$ in the ratio $$3:2$$
We know that, if a point $$P(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) \& \ B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ in the ratio $$m:n$$, then by the section formula, we have:
$$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n } \ \& \ y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
$$\therefore$$ $$(x,y)=\left( \dfrac { 2\times 2+3\times (-3) }{ 3+2 } ,\dfrac { 2\times (-5)+3\times 5 }{ 3+2 } \right) $$
$$\Rightarrow \left (\dfrac{4-9}{5},\dfrac{-10+15}{5}\right )$$
$$\Rightarrow (\dfrac{-5}{5},\dfrac{5}{5})$$
$$\therefore \ (x,y)=(-1,1)$$
Hence, the coordinates of the point which is three-fifth of the line joining the points $$(2,-5)$$ and $$(-3,5)$$ are $$(-1,1)$$.