Self Studies

Coordinate Geometry Test - 32

Result Self Studies

Coordinate Geometry Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of the triangle formed by the points $$(2, 6), (10, 0)$$ and $$(0, k)$$ is zero square units. Find the value of $$k.$$
    Solution
    The area of the triangle is:

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    We are given that the area of the triangle is $$0$$ and the points are $$(2,6)$$, $$(10,0)$$ and $$(0,k)$$, therefore,

    $$\Rightarrow 0=\dfrac { 1 }{ 2 } \left| 6(10-0)+0(0-2)+k(2-10) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-0-8k \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-8k \right| $$

    $$\Rightarrow 60-8k=0\\ \\ \Rightarrow 8k=60\\ \Rightarrow k=\dfrac { 60 }{ 8 } =\dfrac { 15 }{ 2 }$$
     
    Hence, $$k=\dfrac { 15 }{ 2 }$$.
  • Question 2
    1 / -0
    Area of a triangle whose vertices are (0, 0), (2, 3) , (5, 8) is _______ square units.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$


    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (0,0) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (2,3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (5,8)$$ in the area formula, we get

    Area of triangle ABC  $$ = \left| \frac {  (0)(3-8)+(2)(8-0)+5(0-3) }{ 2 }  \right|  = \left| \frac { 16 -15 }{ 2 }  \right|  = \frac {1}{2} units $$

  • Question 3
    1 / -0
    Determine the coordinates of the point which is three-fifth of the line joining the points (2, -5) and (-3, 5).
    Solution
    Let $$A(2,-5),\ B(-3,5) \text{ and } P$$ be three points
    Let the coordinates of the point $$P$$ be $$(x,y)$$
    Given that, $$AP=\dfrac{3}{5}\times AB$$
    $$\therefore \ \dfrac{AP}{AB}=\dfrac{3}{5}$$

    $$\Rightarrow \dfrac{AB}{AP}=\dfrac{5}{3}$$

    $$\Rightarrow \dfrac{AP+BP}{AP}-1=\dfrac{5}{3}-1$$

    $$\Rightarrow \dfrac{BP}{AP}=\dfrac{2}{3}$$

    $$\therefore \  \dfrac{AP}{BP}=\dfrac{3}{2}$$

    Hence, point $$P$$ divides the line segment $$AB$$ in the ratio $$3:2$$

    We know that, if a point $$P(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \& \  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$, then by the section formula, we have:

    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n } \  \&  \ y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$

    $$\therefore$$  $$(x,y)=\left( \dfrac { 2\times 2+3\times (-3) }{ 3+2 } ,\dfrac { 2\times (-5)+3\times 5 }{ 3+2 }  \right) $$

    $$\Rightarrow \left (\dfrac{4-9}{5},\dfrac{-10+15}{5}\right )$$

    $$\Rightarrow (\dfrac{-5}{5},\dfrac{5}{5})$$

    $$\therefore \ (x,y)=(-1,1)$$

    Hence, the coordinates of the point which is three-fifth of the line joining the points $$(2,-5)$$ and $$(-3,5)$$ are $$(-1,1)$$.

  • Question 4
    1 / -0
    M is the midpoint of $$\displaystyle \overline{AB}$$ The coordinates of A are (-2,3) and the coordinates of M are (1,0) Find the coordinates of B
    Solution

  • Question 5
    1 / -0
    If (-2, -4) is the midpoint of (6, -7) and (x, y) then the values of x and y are
    Solution
    Since, $$(-2, -4)$$ is the midpoint of $$(6, -7)$$ and $$(x,y).$$
    $$\Rightarrow \dfrac{x+6}2=-2$$
    $$\Rightarrow x=-10$$
    and $$ \dfrac{y-7}2=-4$$$$\Rightarrow y=-1$$
    Option D is correct.
  • Question 6
    1 / -0
    Find the midpoint of the segment joining the points $$(4, -2)$$ and $$(-8,6)$$.
    Solution
    It is known that if $$(x,y)$$ is the mid-point of the segment joining $$(x_1,y_1)$$ and $$(x_2,y_2)$$ then,
    $$x=\dfrac{x_1+x_2}{2}$$ and $$y=\dfrac{y_1+y_2}{2}$$.
    The mid point of segment joining the points $$(4,-2)$$ and $$(-8,6) $$ is 
    $$\left(\dfrac{4-8}2,\dfrac{-2+6}2\right)=(-2,2)$$
  • Question 7
    1 / -0
    Mark planted two trees on a planning grid at coordinates $$(0,8)$$ and $$(12,4)$$. Determine the midpoint of the line segment connecting the two trees
    Solution

  • Question 8
    1 / -0
    Find the length of the  median through $$(-2, -5)$$ of the triangle whose vertices are $$(-6, 2),\; (2, -2),$$ and $$(-2, -5).$$
    Solution
    Let $$A (-6, -2) \, B(2, -2) $$  and $$c(-2, -5)$$ be the vertices of $$\triangle ABC$$.

    We have to find the median passing through $$(-2,-5)$$ so, it will also pass through the midpoint of $$AB$$ as we are concerned with the median.

    $$\text{midpoint}(AB)= \left(\dfrac{-6 + 2}{2} , \dfrac{2 - 2}{2} \right) $$
                                $$= (-2, 0)$$

    So, from the above diagram we can say that length of $$PC$$ is the required median length,
    $$\begin{aligned}{}PC &= \sqrt {{{( - 2 - ( - 2))}^2} + {{( - 5 - 0)}^2}} \\ &= \sqrt {0 + 25} \\ &= 5{\text{ units}}\end{aligned}$$

  • Question 9
    1 / -0
    The area of triangle with vertices $$A(5,\,0),\,B(8,\,0)$$ and $$C(9,\,5)$$ is
    Solution
    Area of triangle $$=\dfrac{1}{2}\begin{bmatrix}x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\end{bmatrix}$$
    $$A=\dfrac{1}{2}\begin{bmatrix}5(0-5)+8(5-0)+9(0-0)\end{bmatrix}$$
    $$A=\dfrac{1}{2}\begin{bmatrix}-25+40\end{bmatrix}=\dfrac{15}{2}$$ square units.
    So, option B is correct.
  • Question 10
    1 / -0
    The area of the triangle formed from points $$(1, 2), (2, 4)$$ and $$(3, 1)$$ is ____ square units.
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 1$$, $$y_{1} = 2$$, $$x_{2} = 2$$, $$y_{2} = 4$$, $$x_{3} = 3$$ and $$y_{3} = 1$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[1(4 - 1) + 2(1 - 2) + 3(2 - 4)]\right|$$
                               $$=$$ $$\left|\dfrac{1}{2}\times[3 - 2 - 6]\right|$$
                               $$=$$ $$\left|\dfrac{1}{2}\times -5\right|$$
                               $$=$$ $$\left|-\frac{5}{2} \right|$$
    Area always in absolute value.
    So, area of the triangle $$= \dfrac{5}{2}$$ square units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now