Self Studies

Coordinate Geometry Test - 33

Result Self Studies

Coordinate Geometry Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\triangle OPQ$$ is formed by the coordinates $$P(0,\,5),\, Q(8,\,0)$$ and origin $$O$$. The area of $$\triangle OPQ$$ is ____ square units.
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Area of $$\triangle OPQ $$
    $$=\dfrac 12 \left[ 1(0) - 1(0) +1(-40)\right]$$
    $$=\dfrac 12 \times 40 = 20$$ sq. units
  • Question 2
    1 / -0
    Find coordinates of point which divides the line segment internally, joining the points $$(5,\,7)$$ and $$(9,\,12)$$ in ratio $$2:4$$.
    Solution
    We know that if a point $$P(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then, by the section formula, we have

    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  \&  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$

    Hence $$m=2,\,n=4,\,x_1=5,\,x_2=9,\,y_1=7,\,y_2=12$$

    $$\therefore$$ $$x=\dfrac{(5\times4)+(9\times2)}{6}$$

    and    

    $$y=\dfrac{(7\times4)+(12\times2)}{6}$$

    $$x=\dfrac{20+18}{6}$$    and   $$y=\dfrac{28+24}{6}$$

    $$x=\dfrac{38}{6} = \dfrac {19}{3}$$    and    $$y=\dfrac{52}{6}=\dfrac{26}{3}$$

    $$(x,\,y)\Rightarrow\,\begin{pmatrix}\dfrac{19}{3},\,\dfrac{26}{3}\end{pmatrix}$$
  • Question 3
    1 / -0
    Find coordinates of point which divides the line segment internally, joining the points $$(9,\,18)$$ and $$(1,\,2)$$ in ratio $$3:6$$.
    Solution
    As we know if a point $$P(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then, by the section formula, 
    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  $$
    $$  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    $$m=3,\,n=6,\,x_1=9,\,x_2=1,\,y_1=18,\,y_2=2$$
    By section formula for internal division,
    $$x=\dfrac{9\times6+3\times1}{9}$$    and   $$y=\dfrac{18\times6+2\times3}{9}$$

    $$x=\dfrac{54+3}{9}$$    and    $$y=\dfrac{108+6}{9}$$

    $$x=\dfrac{57}{9}$$    and    $$y=\dfrac{114}{9}$$

    $$x=\dfrac{19}{3}$$     and   $$y=\dfrac{38}{3}$$
  • Question 4
    1 / -0
    The area of triangle with vertices $$A(0,\,9),\,B(0,\,4)$$ and $$C(-5,\,-9)$$ is
    Solution
    Area of triangle $$=\dfrac{1}{2}\begin{bmatrix}x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\end{bmatrix}$$
                               $$=\dfrac{1}{2}\begin{bmatrix}0(4+9)+0(-9-9)+(-5)(9-4)\end{bmatrix}$$
                               $$=\dfrac{1}{2}\begin{bmatrix}-5\times5\end{bmatrix}$$
                               $$=-\dfrac{25}{2}$$
    The area cannot be negative.
    $$\therefore$$ It must be $$\dfrac{25}{2}$$ sq. units
    So, option A is correct.
  • Question 5
    1 / -0
    What is the area of the triangle for the following points $$(6, 2), (5, 4)$$ and $$(3, -1)$$?
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 6$$, $$y_{1} = 2$$, $$x_{2} = 5$$, $$y_{2} = 4$$, $$x_{3} = 3$$ and $$y_{3} = -1$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[6(4 + 1) + 5(-1 - 2) + 3(2 - 4)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[30 - 15 - 6]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 9\right|$$
    $$=$$ $$\left|4.5 \right|$$
    Area always in absolute value.
    So, area of the triangle $$= 4.5$$ square units.
  • Question 6
    1 / -0
    Calculate mid point of $$A(5,\,3)$$ and $$B(9,\,8)$$
    Solution
    The mid point of line segment joining $$(x_1,\,y_1)$$ and $$(x_2,\,y_2)$$ is $$\begin{pmatrix}\dfrac{x_1+x_2}{2},\,\dfrac{y_1+y_2}{2}\end{pmatrix}$$
    Mid point of AB $$\Rightarrow\begin{pmatrix}\dfrac{5+9}{2},\,\dfrac{3+8}{2}\end{pmatrix}$$
    $$\Rightarrow\begin{pmatrix}7,\,\dfrac{11}{2}\end{pmatrix}$$
  • Question 7
    1 / -0
    The area of the triangle whose vertices are $$(0, 1), (1, 4)$$ and $$(1, 2)$$ is ___ square units.
    Solution
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 0$$, $$y_{1} = 1$$, $$x_{2} = 1$$, $$y_{2} = 4$$, $$x_{3} = 1$$ and $$y_{3} = 2$$
    Substitute the values, we get
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[0(4 - 2) + 1(2 - 1) + 1(1 - 4)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[0 + 1 - 3]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times -2\right|$$
    $$=$$ $$\left|- 1 \right|$$
    Area always in absolute value.
    So, area of the triangle is $$ 1$$ square units.
  • Question 8
    1 / -0
    What is the midpoints between the coordinates $$(-1, 2)$$ and $$(-1, -6)$$?
    Solution
    We know the midpoint formula between two points.
    $$\left(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\right)$$
    Substitute the values, we get
    $$=$$ $$\left(\dfrac{-1-1}{2},\dfrac{2-6}{2}\right)$$
    $$=$$ $$\left(\dfrac{-2}{2},\dfrac{-4}{2}\right)$$
    Therefore, midpoint is $$\left(-1, -2\right)$$
  • Question 9
    1 / -0
    Find the vertices of the triangle whose mid point of sides are $$(3, 1), (5, 6)$$ and $$(-3, 2)$$
    Solution
    Let coordinates of the vertices of the triangle $$A, B$$ and $$C$$ be 
    $$A (x_{1}, y_{1}) B(x_{2}, y_{2})$$ and $$C (x_{3} , y_{3})$$, respectively.

    Now, $$\dfrac {x_{2} + x_{3}}{2} = 3\Rightarrow x_{2} + x_{3} = 6 ..... (I)$$

    $$\dfrac {y_{2} + y_{3}}{2} = 1\Rightarrow y_{2} + y_{3} = 2 ...... (II)$$

    $$x_{3} + x_{1} = 10 ..... (III)$$

    $$y_{1} + y_{3} = 12 ......(IV)$$

    $$x_{1} + x_{2} = -6 ......(V)$$

    $$y_{1} + y_{2} = 4...... (VI)$$

    Adding equations (I), (III) and (V), we get
    $$2x_1+2x_2+2x_3 = 10$$
    $$x_1+x_2+x_3 = 5$$
    $$x_3 = 11$$       ....$$[\because x_1+x_2 = -6]$$
    $$x_1 = -1$$        ....$$[\because x_2+x_3 = 6]$$
    $$\therefore x_2 = -5$$

    Adding equations (II), (IV) and (VI), we get
    $$2y_1+2y_2+2y_3 = 18$$

    $$y_1+y_2+y_3 = 9$$

    $$y_3 = 5$$       ....$$[\because y_1+y_2 = 4]$$
    $$y_1 = 7$$        ....$$[\because y_2+y_3 = 2]$$
    $$\therefore y_2 = -3$$

    Therefore, the coordinates of the vertices are $$A(-1, 7) B(-5, -3)$$ and $$C (11, 5)$$.
  • Question 10
    1 / -0
    What is the area of the triangle whose vertices are: $$(-3, 15), (6, -7) $$ and $$(10, 5)$$?
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$  is $$A=\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    Here $$x_{1} = -3$$, $$y_{1} = 15$$, $$x_{2} = 6$$, $$y_{2} = -7$$, $$x_{3} = 10$$ and $$y_{3} = 5$$

    Substituting the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[-3(-7 - 5) + 6(5 - 15) + 10(15 + 7)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[36 - 60 + 220]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 196\right|$$
    $$=$$ $$\left|98 \right|$$

    Area is always in absolute value.
    So, area of the triangle $$= 98$$ square units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now