Self Studies

Coordinate Geometry Test - 34

Result Self Studies

Coordinate Geometry Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Three vertices of rhombus taken in order are $$(2, -1), (3, 4)$$ and $$(-2, 3)$$. Find the fourth vertex.
    Solution
    Let M be the mid point of one diagonal formed by (2, -1) and (-2, 3) then using mid-point method;
    Coordinate of $$M \left (\dfrac {2+( -2)}{2}, \dfrac {-1 + 3}{2}\right ) = (0, 1)$$
    $$\Rightarrow \left (\dfrac {x + 3}{2}, \dfrac {y + 4}{2}\right ) = (0, 1)$$
    $$\Rightarrow x = -3$$ and $$y = -2$$
    $$\therefore (-3, -2)$$ is coordinate of $$D$$
  • Question 2
    1 / -0
    Find the midpoint between the coordinates $$(9, 3)$$ and $$(1, 1)$$.
    Solution
    We know the midpoint formula between two points.
    $$\left(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\right)$$
    Substitute the values, we get
    $$=$$ $$\left(\dfrac{9+1}{2},\dfrac{3+1}{2}\right)$$
    $$=$$ $$\left(\dfrac{10}{2},\dfrac{4}{2}\right)$$
    Therefore, midpoint is $$\left(5, 2\right)$$
  • Question 3
    1 / -0
    Find the midpoints between the coordinates $$(2, 3)$$ and $$(1, 0)$$
    Solution
    Midpoint between the coordinates $$(x_1,y_1)$$ and $$(x_2,y_2)$$ is:
    $$\left( \dfrac { x_{ 1 }+x_{ 2 } }{ 2 } ,\dfrac { y_{ 1 }+y_{ 2 } }{ 2 }  \right)$$
    Therefore, the midpoint between the coordinates $$(2,3)$$ and $$(1,0)$$ is: 
    $$\left( \dfrac { 2+1 }{ 2 } ,\dfrac { 3+0 }{ 2 }  \right) =\left( \dfrac { 3 }{ 2 } ,\dfrac { 3 }{ 2 }  \right)$$
    Therefore, midpoint is $$\left (\dfrac {3}{2}, \dfrac {3}{2}\right)$$.
  • Question 4
    1 / -0
    Find the value of $$k$$, so that $$(2, 1)$$ is the midpoint between $$(1, k)$$ and $$(3, 1)$$.
    Solution
    We know the midpoint of the line joining the points $$(x_1,y_1)$$ and $$(x_2,y_2)$$is given as 
    $$\left(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\right)$$
    Substitute the values, we get
    $$\left(\dfrac{1+3}{2},\dfrac{k+1}{2}\right)$$ $$=$$ $$\left(2, 1\right)$$
    On equating, we get
    $$\left(\dfrac{k+1}{2}\right)$$ $$= 1$$
    $$\Rightarrow k + 1 = 2$$
    $$\Rightarrow k = 2 - 1$$
    $$\Rightarrow k = 1$$
  • Question 5
    1 / -0
    Find the centre of circle, if the coordinates of two ends of diameter are $$(-1, 7)$$ and $$(11, 5)$$
    Solution
    Since centre of circle is the mid-point of the diameter of the circle.
    $$x = \dfrac {11+( -1)}{2} = 5$$ and $$y = \left (\dfrac {5 + 7}{2}\right )$$ $$= 6$$ (using mid-point formula for centre).
    $$\therefore (5, 6)$$ is the centre
  • Question 6
    1 / -0
    $$(9, 2), (5, -1) $$ and $$ (7, -5)$$ are the vertices of the triangle. Find its area.
    Solution
    Area of triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    Formula for area of triangle is $$\left|\dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2} (y_{3} - y_{1}) + x_{3} (y_{1} - y_{2})] \right|$$
    where $$x_{1} = 9$$, $$y_{1} = 2$$, $$x_{2} = 5$$, $$y_{2} = -1$$, $$x_{3} = 7$$ and $$y_{3} = -5$$
    Substitute the values, we get,
    Area of triangle $$=$$ $$\left|\dfrac{1}{2}\times[9(-1 + 5) + 5(-5 - 2) + 7(2 + 1)]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times[36 - 35 + 21]\right|$$
    $$=$$ $$\left|\dfrac{1}{2}\times 22\right|$$
    $$=$$ $$\left|11 \right|$$
    Area always in absolute value.
    So, area of the triangle $$= 11$$ square units.
  • Question 7
    1 / -0
    What is the midpoints between the coordinates $$(0, -6)$$ and $$(4, -4)$$?
    Solution
    We know the midpoint formula between two points.
    $$\left(\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\right)$$
    Substitute the values, we get
    $$=$$ $$\left(\dfrac{0+4}{2},\dfrac{-6-4}{2}\right)$$
    $$=$$ $$\left(\dfrac{4}{2},\dfrac{-10}{2}\right)$$
    Therefore, midpoint is $$\left(2, -5\right)$$.
  • Question 8
    1 / -0
    If $$A(3, 5), B (-5, -4), C (7, 10)$$ are the vertices of a parallelogram, taken in the order, then the coordinates of the fourth vertex are
    Solution
    The given points are $$A(3,5),B(-5,-4),C(7,10)$$
    Let coordinates of fourth vertex are $$D(x, y)$$. 

    Since, $$ABCD$$ is a parallelogram,
    Midpoint of $$AC$$=Midpoint of $$BD$$
    By mid point formula,
    $$\left(\dfrac{3+7}{2},\dfrac{5+10}{2}\right)=\left(\dfrac{-5+x}{2},\dfrac{-4+y}{2}\right)$$

    $$\therefore \dfrac {3+7}{2} = \dfrac {-5+x}{2}$$
    $$\Rightarrow 10=-5+x$$
    $$\Rightarrow x=15$$

    And, $$\dfrac{5+10}{2} = \dfrac {-4+y}{2}$$
    $$\Rightarrow 15=-4+y$$
    $$\Rightarrow y=19$$

    $$\therefore$$ Coordinates of fourth vertex are $$(15, 19)$$.
  • Question 9
    1 / -0
    If $$C$$ is a point on the line segment joining $$A\left( -3,4 \right) $$ and $$B\left( 2,1 \right) $$ such that $$AC=2BC$$, then the coordinate of $$C$$ is
    Solution
    Since, $$AC=2BC$$

    $$\dfrac {AC}{BC}=\dfrac 21$$

    Point $$C$$ divides $$AB$$ in the $$2:1$$ ratio

    Giving $$A(-3,4)$$ and $$B(2,1)$$

    Here we apply the section formula, i. e.  if a point $$C(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then we have 

    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  \&  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    $$\therefore$$ Coordinate of $$C$$ are

    $$\left( \dfrac { 4-3 }{ 2+1 } ,\dfrac { 2+4 }{ 2+1 }  \right) $$ ie, $$\left( \dfrac { 1 }{ 3 } ,2 \right) $$  

  • Question 10
    1 / -0
    In the following figure, F is the midpoint of the line segment GH. Which of the following are the coordinates of F?

    Solution
    Given coordinates are $$G(-6,1)$$ and $$H(9,8)$$.
    To find out, 
    The coordinates of $$F$$

    Let the coordinates of $$F$$ be $$(x,y)$$.
    We know that the coordinates of the midpoint of the line segment joining $$(x_1,y_1) \ and\ (x_2,y_2)$$ are: 

    $$P(x,y)=\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2}\right)$$

    Here, $$\left( { x }_{ 1, }{ ,y }_{ 1 } \right) =(9,8)$$
    and $$\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( -6,1 \right) $$

    Hence, $$\left(  x , y  \right) =\left( \dfrac { 9+\left( -6 \right)  }{ 2 } ,\dfrac { 8+1 }{ 2 }  \right) $$
    $$=\left( \dfrac { 3 }{ 2 } ,\dfrac { 9 }{ 2 }  \right) $$

    Hence, the coordinates of $$F$$ are $$\left( \dfrac { 3 }{ 2 } ,\dfrac { 9 }{ 2 }  \right) $$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now