Self Studies

Coordinate Geometry Test - 35

Result Self Studies

Coordinate Geometry Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the standard $$(x,y)$$ coordinate plane, what are the coordinates of the midpoint of a line segment whose endpoints are $$(-3,0)$$ amd $$(7,4)$$?
    Solution
    Given two points $$(x_{1},y_{1})$$ and $$(x_{2},y_{2})$$, then the coordinates of the midpoint are $$\left (\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}\right)$$.
    In the above case the points are $$(-3,0)$$ and $$(7,4)$$. 
    Hence, the midpoint is $$\left (\dfrac{-3+7}{2},\dfrac{0+4}{2}\right)=(2,2)$$.
  • Question 2
    1 / -0

    In figure, if the midpoints of segments $$\overline{GH}, \overline{JK}$$, and $$\overline{LM}$$ are connected, calculate the area of the resulting triangle.

    Solution
    Midpoint of $$GH$$ is $$\left (0, \dfrac {15}{4}\right)$$
    Midpoint of $$JK$$ is $$(-5,-2)$$ 
    Midpoint of $$ML$$ is $$(3,-2)$$
    If the coordinates of triangle is $$(a,b) , (c,d) , (e,f)$$ then the area formed by the coordinates of triangle is $$\dfrac{1}{2} \times |a(d-f) + c(f-b) + e(b-d)|$$
    Therefore, the area enclosed by those midpoints will be 
    $$ \dfrac12 \times \left |0(-2+2) -5\left (-2-\dfrac {15}{4}\right) +3\left (\dfrac {15}{4}+2\right)\right| $$
    $$= \dfrac {1}{2} \times |0+46| $$
    $$= 23$$
  • Question 3
    1 / -0
    Calculate the area of a triangle with vertices $$(1, 1), (3, 1)$$ and $$(5, 7)$$.
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Area of triangle $$=\dfrac 12 \left|1(21-5)-1(7-5)+1(1-3) \right|$$
    $$=\dfrac 12 \left| 16-2-2\right| = 6$$
    Hence, area of the triangle with the given coordinates is $$6$$.
  • Question 4
    1 / -0
    Points $$A(\sqrt {2}, 4), B(6, -\sqrt {3})$$ and $$C$$ are collinear. If $$B$$ is the midpoint of line segment $$AC$$, approximately calculate the $$(x, y)$$ coordinates of point $$C$$.
    Solution
    Given points $$A$$ $$(\sqrt{2},4)$$, $$B$$ $$(6,-\sqrt{3})$$ and $$C$$ are col-linear if $$B$$ the mid point $$AC$$. 
     if (A) $$(3.71,1.13)$$ is point $$C$$, then point $$(x,y) =$$ $$\dfrac{\sqrt{2}+3.71}{2},\dfrac{4+1.13}{2}$$
    $$\Rightarrow 2.56,2.56$$ this not point $$B$$ 
     if (B) $$(3.71,5.73)$$ is point $$C$$, then point $$(x,y) =$$ $$\dfrac{\sqrt{2}+3.71}{2},\dfrac{4+5.73}{2}$$
    $$\Rightarrow 2.56,4.86$$ this not point $$B$$ 
     if (C) $$(7.41,-7.46)$$ is point $$C$$, then point $$(x,y) =$$ $$\dfrac{\sqrt{2}+7.41}{2},\dfrac{4-7.46}{2}$$
    $$\Rightarrow 4.41,-1.73$$ this not point $$B$$ 
     if (D) $$(10.59,-7.46)$$ is point $$C$$, then point $$(x,y) =$$ $$\dfrac{\sqrt{2}+10.59}{2},\dfrac{4-7.46}{2}$$
    $$\Rightarrow 6,-1.73$$ this the  point $$B (6,-1.73)$$

    So (D) $$(10.59,-7.46)$$ is mid point $$B$$ of line $$AC$$.
  • Question 5
    1 / -0
    Given point $$A(-3, -8)$$, if the midpoint of segment $$AB$$ is $$(1, -5)$$, calculate the coordinates of point $$B$$.
    Solution
    Given, coordinates $$A (-3,-8)$$ and the mid point of $$AB$$ is $$(1,-5)$$
    As per Midpoint formula coordinates of mid point $$=$$ $$\dfrac{x_{1}+x_{2}}{2},\dfrac{y_{1}+y_{2}}{2}$$
    Let the  coordinates of point $$B$$ be $$(x,y)$$
    Then $$(1,-5)=\left [ \left (\dfrac{-3+x}{2}\right),\left (\dfrac{-8+y}{2}\right) \right ]$$
    Then $$\dfrac{-3+x}{2}=1$$
    $$\Rightarrow -3+x=2$$
    $$\Rightarrow x=2+3=5$$
    Then$$\dfrac{-8+y}{2}=-5$$
    $$\Rightarrow -8+y=-10$$
    $$\Rightarrow y=-10+8=-2$$
    Then coordinates of $$B$$ is $$(5,-2)$$.
  • Question 6
    1 / -0
    The area of the triangle with coordinates $$(1, 2), (5, 5)$$ and $$(k, 2)$$ is $$15$$ square units. Calculate a possible value for $$k$$.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
     $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Therefore,
    Area of triangle is $$15 = \dfrac {1}{2} \times |1(5-2) + 5(2-2) + k(2-5)| $$
    $$ \Rightarrow \dfrac {1}{2} \times |3+0-3k| = \dfrac {1}{2} \times |3-3k| = 15$$ 
    $$\Rightarrow |3-3k|=30$$  =>  $$|1-k| = 10$$
    $$\Rightarrow 1-k = 10$$ and $$1-k=-10$$ 
    $$\Rightarrow  k=-9$$ and $$k=11$$
  • Question 7
    1 / -0
    Find the area of a triangle whose vertices are $$(0, 6\sqrt {3}), (\sqrt {35}, 7)$$, and $$(0, 3)$$.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of triangle whose vertices are $$(0,6\sqrt{3}),(\sqrt{35},7) ,(0,3)$$
    $$=\dfrac{1}{2}\left [ 0(7-3)+\sqrt{35}(3-6\sqrt{3})+0(6\sqrt{3}-7)) \right ]$$
    $$=\dfrac{1}{2}\left [ \sqrt{35}(3-6\sqrt{3}) \right ]$$
    $$=\dfrac{1}{2}\left [ 5.91(3-6\times 1.73) \right ]$$
    $$=\dfrac{1}{2}\times 5.91\times 7.40$$
    $$=\dfrac{1}{2}\times 43.74$$
    $$=21.87$$
  • Question 8
    1 / -0
    A square is formed by the points $$(4, 5), (12, 5), (12, -3)$$ and $$(4, -3)$$. Find the coordinates of the point at which the diagonals of the square intersect.
    Solution
    We know that the diagonal of square is intersect equal at mid point. 
    Then mid point of diagonal $$(4,5)$$ and $$(12,-3)$$ is $$\left ( \dfrac{12+4}{2} \right ),\left ( \dfrac{5-3}{2} \right )=\left ( \dfrac{16}{2} \right ),\left ( \dfrac{5-3}{2} \right )= (8,1)$$
    Then mid point of diagonal $$(12,5)$$ and $$(14,-3)$$ is $$\left ( \dfrac{12+4}{2} \right ),\left ( \dfrac{5-3}{2} \right )=\left ( \dfrac{16}{2} \right ),\left ( \dfrac{5-3}{2} \right )= (8,1)$$
    Then diagonal intersect at point $$(8,1)$$.
  • Question 9
    1 / -0
    If the coordinates of the one end of a diameter of a circle are $$(2,3)$$ and the coordinates of its centre are $$(-2,5),$$ then the coordinates of the other end of the diameter are:
    Solution
    Let the coordinates of the one end of a diameter $$AB$$  of a circle are $$A(2,3)$$ and $$B(x,y) .$$
    Let the coordinates of the center of the circle $$C(-2,5).$$
    As center is the midpoint of the diameter $$AB$$ so the coordinates of center is
    $$C(\dfrac{2+x}{2},\dfrac{3+y}{2})$$
    Now equating the coordinates of center we get
    $$ \dfrac{2+x}{2}=-2$$
    $$\Rightarrow 2+x=-4$$
    $$\Rightarrow x=-4-2$$
    $$\Rightarrow x=-6$$
    $$\dfrac{3+y}{2}=5$$
    $$\Rightarrow 3+y=10$$
    $$\Rightarrow y=10-3$$
    $$\Rightarrow y=7$$
    $$\therefore$$Coordinates of $$B=(-6,7).$$
  • Question 10
    1 / -0
    In fig., the area of triangle ABC (in sq. units) is:

    Solution
    Given: Coordinates of Point $$A (1,3) ,B (-1,0)$$ and $$C (4,0)$$
    Construction: Drop a perpendicular from $$A$$ on $$x-$$ axis, which meets x-axis at $$D\equiv(1,0)$$
    Now in $$\Delta ADC, AD = 3, DC = 3$$
    Area of $$\Delta ADC = \dfrac12\times DC\times AD$$
    $$= \dfrac12\times3\times3 = \dfrac92 \ cm^2$$

    Now in $$\Delta ADB, AD = 3, DB = 2$$
    Area of $$\Delta ADB = \dfrac12\times DB\times AD$$
    $$= \dfrac12\times2\times3 = 3 \ cm^2$$

    Area of $$\Delta ABC =$$ Ara of $$\Delta ADC + $$ Area of $$\Delta ABD$$
    $$ = \dfrac92 + 3 = \dfrac{15}2 = 7.5\ cm^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now