Self Studies

Coordinate Geometry Test - 36

Result Self Studies

Coordinate Geometry Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the coordinates of the point $$X$$ that divides the join of $$A(7, 4)$$ and $$B(-3,6)$$ in the ratio $$1:3$$
    Solution
    Given the two points $$A(7,4)$$ and $$B(-3,6)$$ and ratio $$m:n=1:3$$
    Here we apply the section formula :  If a point $$X(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then we have 

    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  ,  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    $$\therefore$$ By section formula
    $$(x,y)\ =\left( \dfrac { 1\times (-3)+3\times 7 }{ 1+3 } ,\dfrac { 1\times 6+3\times 4 }{ 1+3 }  \right) \\    =\left( \dfrac { -3+21 }{ 4 } ,\dfrac { 6+12 }{ 4 }  \right)\\ =\left( \dfrac { 18 }{ 4 } ,\dfrac { 18 }{ 4 }  \right)\\ =\left( \dfrac { 9 }{ 2 } ,\dfrac { 9 }{ 2 }  \right)  $$
  • Question 2
    1 / -0
    In the $$xy$$-coordinate plane, the coordinates of three vertices of a rectangle are $$\left(1, 5\right)$$, $$\left(5, 2\right)$$ and $$\left(5, 5\right)$$. What are the coordinates of the fourth vertex of the rectangle?
    Solution
    The intersection point of diagonals of rectangle is midpoint of each diagonal.
    Let the fourth coordinate be $$(x,y)$$. By the above property we get 
    $$ \dfrac { x+5 }{ 2 } =\dfrac { 1+5 }{ 2 } $$. which implies $$x=1$$.
    $$\dfrac { y+5 }{ 2 } =\dfrac { 2+5 }{ 2 } $$. which implies $$y=2$$).
    So, the coordinate $$(x,y)$$ is $$(1,2)$$.
  • Question 3
    1 / -0
    In the diagram, $$E$$ is the midpoint of line $$DG$$ and $$F$$ is the midpoint of line $$EG$$.
    The coordinates of $$F$$ are:

    Solution
    Let the coordinate of 'G' be (a,b) & 'F' be (x,y)
    As 'E' is be (x,y)
    As 'E' is mid lot of OG
    $$\Rightarrow \left(\dfrac{a+1}{2},\dfrac{b+6}{2}\right)=(5,4)$$
    $$\Rightarrow (a,b)=(9,2)$$
    As 'F' is midpoint of EG
    $$\Rightarrow \boxed{(x,y)=\left(\dfrac{5+9}{2},\dfrac{4+2}{2}\right)=(7,3)}$$
  • Question 4
    1 / -0
    The coordinates of points $$P(-2, 2), Q(3, 2) $$ and $$R(3, -2)$$ are the vertices of a rectangle $$PQRS$$`. What are the coordinates of S? 
    Solution
    Mid-point of $$PR=\left(\cfrac{-2+3}2,\cfrac{2-2}2\right)=\left(\cfrac12,0\right)$$
    Let coordinate of $$S=(x,y)$$
    Mid-point of $$QS=\left(\cfrac{3+x}2,\cfrac{2+y}2\right)$$
    Mid-point of $$PR=$$Mid-point of $$QS$$
    $$\Rightarrow\left(\cfrac12,0\right)=$$$$\left(\cfrac{3+x}2,\cfrac{2+y}2\right)$$
    We have $$\cfrac12=\cfrac{3+x}2$$
    $$\Rightarrow x=-2$$ and $$0=\cfrac{2+y}2$$
    $$\Rightarrow y=-2$$
    Coordinate of $$S=(-2,-2)$$
    Hence, B is the correct option.
  • Question 5
    1 / -0
    On the Cartesian plane, $$Q$$ is the midpoint of the straight line $$PR$$
    Find the values of $$x$$ and $$y$$.

    Solution
    By mid point formulae
    $$x=\dfrac{7+1}{2}=4$$
    $$3=\dfrac{y+4}{2}$$
    $$\Rightarrow y=2$$
  • Question 6
    1 / -0
    The diagram is on a Cartesian plane.
    If the midpoints of $$PQ$$ and $$RS$$ are the same, the coordinates of $$S$$ are:

    Solution
    Let $$'x'$$ is mid point of $$PQ$$ and $$RS$$ 
    and $$s(x,y)$$ abd $$'x'$$ has $$(a,b)$$ coordinates and
    $$P(-2,6)$$ ; $$Q(4,2)$$ ; $$R(2,6)$$
    $$\Rightarrow \left(\dfrac{-2+4}{2},\dfrac{6+2}{2}\right)=(a,b)\left(\dfrac{x+2}{2},\dfrac{y+6}{2}\right)\Rightarrow \boxed{x=0\,and\,y=2}$$
  • Question 7
    1 / -0
    $$M$$ is the midpoint of the straight line $$PQ$$. If $$P(-2,9)$$ and $$M$$ is $$(4,3)$$, find the coordinates of $$Q$$.
    Solution
    Let the coordinates of point $$Q$$ be $$(h,k).$$

    Now, by midpoint formulae,
    $$\begin{aligned}{}\left( {\frac{{h - 2}}{2},\frac{{k + 9}}{2}} \right) &= \left( {4,3} \right)\\\frac{{h - 2}}{2} = 4\text{ and }\frac{{k + 9}}{2} &= 3\\h - 2 = 8\text{ and }k + 9 &= 6\\h = 10\text{ and }k &=  - 3\end{aligned}$$

    Hence, coordinates of point $$Q$$ is $$(10,-3).$$
  • Question 8
    1 / -0
    Identify the true statement.
    Solution
    The point of intersection between the X-axis and Y-axis is called the origin $$(0,0)$$.
    The X-axis is the horizontal line and Y-axis is the vertical line.
  • Question 9
    1 / -0
    In the diagram, $$PQRS$$ is a straight line. $$R$$ is the midpoint of $$QS$$ and $$Q$$ is the midpoint of $$PS$$. $$S$$ is $$(6,5)$$ and $$R$$ is $$(3,5)$$. Find the coordinates of $$P$$.

    Solution
    According to the midpoint formula, the coordinates of the midpoint of the points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ is given by $$\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right).$$

    Let, the coordinates of the point $$P$$ and $$Q$$ are $$(x,y)$$ and $$(a,b)$$ respectively.

    It is given that $$R$$ is the midpoint of $$QS$$ so, by using midpoint formula,
    $$\left(\dfrac{a+6}{2},\dfrac{b+5}{2}\right)=(3,5)$$
    $$\Rightarrow \dfrac{a+6}{2}=3$$ and $$\dfrac{b+5}{2}=5$$
    $$\Rightarrow a+6=6$$ and $$b+5=10$$
    $$\Rightarrow a=0$$ and $$b=5$$

    Hence, coordinate of the point $$Q$$ is $$(0,5).$$

    Similarly, $$Q$$ is the midpoint of $$PS$$ so, 
    $$\left(\dfrac{x+6}{2},\dfrac{y+5}{2}\right)=(0,5)$$
    $$\Rightarrow \dfrac{x+6}{2}=0$$ and $$\dfrac{y+5}{2}=5$$
    $$\Rightarrow x+6=0$$ and $$y+5=10$$
    $$\Rightarrow x=-6$$ and $$y=5$$

    Hence, coordinate of the point $$P$$ is $$(-6,5).$$
  • Question 10
    1 / -0
    On the Cartesian plane, $$Q$$ is the midpoint of the straight line $$PR$$.
    Find the value of $$h$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now