Self Studies

Coordinate Geometry Test - 37

Result Self Studies

Coordinate Geometry Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vertices of a triangle ABC are $$(\lambda, 2 - \lambda), (- \lambda + 1, 2 \lambda) $$ and $$(-4 - \lambda, 6 - 2 \lambda)$$. If its area is 70 units$$^2$$, find the number of integral values of $$\lambda$$.
    Solution
    Given the vertices of $$\triangle$$ABC
    $$A(\lambda ,2-\lambda ),B(-\lambda +1,2\lambda ),C(-4-\lambda ,6-2\lambda )$$
    Given total area $$=70\ unit^{ 2 }$$
    Area 
    $$=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] \\ \Rightarrow \dfrac { 1 }{ 2 } \left[ \left[ 2\lambda -6+2\lambda  \right] +(1-\lambda )\left[ 6-2\lambda -2+\lambda  \right] -(4+\lambda )\left[ 2-\lambda -2\lambda  \right]  \right] =70\\ \lambda (4\lambda -6)+(1-\lambda )(4-\lambda )-(4+\lambda )(2-3\lambda )=2\times 70\\ 4{ \lambda  }^{ 2 }-6\lambda +4-x-4\lambda +{ \lambda  }^{ 2 }-\left[ 8-12\lambda +2\lambda -3{ \lambda  }^{ 2 } \right] =140\\ 5{ \lambda  }^{ 2 }-10\lambda +4-8+12\lambda -2\lambda +3{ \lambda  }^{ 2 }=140\\ 8{ \lambda  }^{ 2 }+\lambda -4-2\lambda =140\\ \Longrightarrow 8{ \lambda  }^{ 2 }-\lambda =136\\ \lambda =4.186,-4.061$$
    $$\therefore$$ No.of Intergral value of $$\lambda =1\left[ i.e,\lambda =4.186 \right] $$
  • Question 2
    1 / -0
    In the diagram, $$KN$$ is a straight line. $$L$$ and $$M$$ are two points on $$KN$$ such that $$KL=LM$$ and $$KM=MN$$. Find the coordinates of $$L$$.

    Solution
    As $$KM=MN\Rightarrow 'M'$$ is  mid point
    $$\Rightarrow M=\left(\dfrac{12+0}{2},\dfrac{10+2}{2}\right)=(6,6)$$
    $$KL=LM\Rightarrow 'L'$$ is mid point
    $$\Rightarrow L=\left(\dfrac{6+0}{2},\dfrac{6+2}{2}\right)=(3,4)$$
  • Question 3
    1 / -0
    $$A(-3,2)$$ and $$B(5,4)$$ are the end points of a line segment, find the coordinates of the midpoints of the line segment.
    Solution
    Since $$A(-3,2)=(x_1,y_1)$$ and $$B(5,4)=(x_2,y_2)$$ are the end points of a line segment.

    The coordinates of the midpoints of the line segment is given by:

    $$(x,y)=\left( \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 }  \right)$$

    $$ \\ \Rightarrow (x,y)=\left( \dfrac { -3+5 }{ 2 } ,\dfrac { 2+4 }{ 2 }  \right) \quad $$

    $$\\ \Rightarrow (x,y)=\left( \dfrac { 2 }{ 2 } ,\dfrac { 6 }{ 2 }  \right) =\left( 1,3 \right)$$ 

  • Question 4
    1 / -0
    The area of a triangle is 5 and its two vertices are A(2, 1) and B(3, -2). The third vertex lies on $$\displaystyle y=x+3$$. What is the third vertex?
    Solution

  • Question 5
    1 / -0
    In the $$xy$$-plane, the vertices of a triangle are $$(-1,3), (6,3)$$ and $$(-1,-4)$$. The area of the triangle is ___ square units.
    Solution
    If $$(x_1,y_1)$$,$$(x_2,y_2)$$ and $$(x_3,y_3)$$ are the vertices of a triangle then its area is given by,
    $$A=\left| \dfrac { 1 }{ 2 } (x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 })) \right| $$
    Therefore, with the vertices $$(-1,3)$$, $$(6,3)$$ and $$(-1,-4)$$. 
    Area of triangle is given by,
    $$A=\left| \dfrac { 1 }{ 2 } (-1(3-(-4))+6(-4-3)+(-1)(3-3)) \right|$$
    $$ =\left| \dfrac { 1 }{ 2 } (-7-42) \right| $$
    $$=\left| \dfrac { 1 }{ 2 } (-49) \right| $$
    $$=\left| -24.5 \right|$$
    $$ =24.5$$ square units.
  • Question 6
    1 / -0
    The vertices of triangle $$PQR$$ are $$P(-3, 2), Q(1, -4)$$, and $$R(7, 0)$$. The altitude drawn from Q intersects the line $$PR$$ at the point
    Solution

  • Question 7
    1 / -0
    Two vertices of a triangle are (2, 1) and (3, -2). Its third vertex is (x, y) such that $$\displaystyle y=x+3$$. If its area is 5 sq. units, what are the co-ordinates of the third vertex?
    Solution
    Given third vertex such that,
    $$y=(x+3)$$
    since, Area of triangle $$ABC=55q$$ units
    $$\pm \dfrac{1}{2}{x(1+2)+2(-2-y)+3(y-1)}=\xi$$
    $$\Rightarrow \pm \dfrac{1}{2}{x+2x-4-2y+3y-3}=\xi$$
    $$\Rightarrow {3x+y-7}=\pm10$$
    $$\Rightarrow 3x+y-17=0$$   ------------(1)
    and $$3x+y+3=0$$ ------------(2)
     Given that $$A(x,y)$$ lies any $$=(x+3)$$    ------------(3)
    from equation (L) and (3),
    $$x=\dfrac{7}{2},y=\dfrac{13}{2}$$
    $$\Rightarrow \boxed{x=3.\xi\,and \, y=6.\xi}$$
    from equation (2) and (3) we get,
    $$x=\dfrac{-3}{2}\,and\, y=1.\xi $$

  • Question 8
    1 / -0
    Area of the triangle formed by the points $$\left( 0,0 \right) ,\left( 2,0 \right) $$ and $$\left( 0,2 \right) $$ is 
    Solution
    Given: $$A=(x_1,y_1)=(0,0)$$

                $$B=(x_2,y_2)=(2,0)$$ and 

                $$C=(x_3,y_3)=(0,2)$$

    Area of triangle $$=\dfrac {1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)++x_3(y_1-y_2)]$$                                     
                               
                               $$=\dfrac {1}{2}[0(0-2)+2(2-0)+0(0-0)]$$

                               $$=\dfrac {1}{2}[2(2)]$$

                               $$=2$$ sq. units.
  • Question 9
    1 / -0
    Find the midpoint of the line segment joining the points $$(1,-1)$$ and $$(-5,-3)$$.
    Solution
    Given points are $$(1,-1)$$ and $$(-5,-3)$$

    To find out,
    The coordinates of the midpoint of the line joining the given points.

    Let the coordinates of the midpoint be $$(x,y)$$.
    We know that the coordinates of the midpoint of the line segment joining $$(x_1,y_1) \ and\ (x_2,y_2)$$ are: 

    $$P(x,y)=\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2}\right)$$

    Here, $$(x_1,y_1)=(1,-1)$$ and $$(x_2,y_2)=(-5,-3)$$.

    Hence, $$x=\dfrac{1+(-5)}{2}$$ and $$y=\dfrac{-1-(-3)}{2}$$.

    $$\Rightarrow x=-2$$ and $$y=1$$

    So, $$(x,y)=(-2,1)$$.

    Hence, $$(-2,1)$$ are the coordinates of the midpoint joining $$(1,-1)$$ and $$(-5,-3)$$.
  • Question 10
    1 / -0
    The centre of a circle is at $$(-6,4)$$. If one end of a diameter of the circle is at the origin, then find the other end.
    Solution
    Take coordinate of other end of diameter as $$P(x,y)$$.

    since, origin divides the diameter of a circle in $$2$$ equal parts, hence origin will be mid-point of $$(0,0)$$ and $$(x,y)$$.

    By midpoint theorem:

    $$x=\dfrac{x_1+x_2}{2}$$ and $$y=\dfrac{y_1+y_2}{2}$$

    $$\implies -6=\dfrac{0+x}{2}=\dfrac{x}{2}$$

    $$\implies x=-12$$

    And,

    $$\implies 4=\dfrac{y+0}{2}=\dfrac{y}{2}$$

    $$\implies y=8$$.

    So, $$P(x,y)=(-12,8)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now