Self Studies

Coordinate Geometry Test - 38

Result Self Studies

Coordinate Geometry Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the points which divide the line segment joining $$A(-4,0)$$ and $$B(0,6)$$ into two equal parts.
    Solution
    Given $$A(-4,0)$$ and $$B(0,6)$$. Let $$P(x,y)$$ divide $$AB$$ into two equal parts.

    By mid-point theorem:

    $$X=\left ( \dfrac{x_1+x_2}{2}\right ) and \ Y=\left ( \dfrac{y_1+y_2}{2}\right )$$

    $$x=\dfrac{-4+0}{2}=-2$$ and $$y=\dfrac{0+6}{2}=3$$.

    so, $$P(x,y)=(-2,3)$$ is require point.
  • Question 2
    1 / -0
    Find the point $$P$$ which divides the line segment joining the points $$A(1,-3)$$ and $$B(-3,9)$$ internally in the ratio $$1:3$$. 
    Solution
    Given the two points $$A(1,-3)$$ and $$B(-3,9)$$ and ratio $$m:n=1:3.$$
    Here we apply the section formula, i. e.  if a point $$X(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then we have 

    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  \ ,   y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    $$\therefore$$  $$(x,y)\ =\left( \dfrac { 3\times 1+1\times (-3) }{ 1+3 } ,\dfrac {3\times (-3)+1\times 9 }{ 1+3 }  \right)    = (0,0) $$
  • Question 3
    1 / -0
    Area of the triangle formed by the points $$(0,0),(2,0)$$ and $$(0,2)$$ is
    Solution

    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Therefore,
    $$=\dfrac{1}{2}\left|0(0-2)+2(2-0)+0(0-0)\right|$$

    $$=\dfrac{1}{2}\left|0+4+0\right|$$

    $$=\dfrac{1}{2}\times 4=2\ sq.\ units$$

    Hence, this is the answer.
  • Question 4
    1 / -0
    The midpoint of the line joining $$(a,-b)$$ and $$(3a,5b)$$ is
    Solution
    Consider the given points.
    $$(a, -b)$$ and $$(3a, 5b)$$

    So, the midpoint according to midpoint formula,
    $$\left(\dfrac{a+3a}{2}, \dfrac{-b+5b}{2}\right)$$

    $$= \left(\dfrac{4a}{2}, \dfrac{4b}{2}\right)$$

    $$= \left(2a, 2b\right)$$

    Hence, this is the answer.
  • Question 5
    1 / -0
    Find the value of $$a$$ if area of the triangle is $$17$$ square units whose vertices are $$(0,0), (4,a), (6,4)$$.                         
    Solution
    vertices of the triangle are $$A(0,0), B(4,a), C(6,4)$$.

    Then area of triangle$$ABC=\dfrac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]$$

                                                 $$\Rightarrow 17=\dfrac{1}{2}[0(a-4)+4(4-0)+6(0-a)$$

                                                 $$\Rightarrow 34=16-6a$$

                                                 $$\Rightarrow a=-\dfrac{18}{6}=-3$$
  • Question 6
    1 / -0
    A(1, 2) and (3, -2) are the end points of $$\overline{AB}$$. Then the midpoints of $$\overline{AB}$$.
    Solution
    Let $$P(x, y)$$ be the midpoint of the line segment joining $$A(1, 2)$$ and $$B(3, -2)$$.
    $$\therefore x = \dfrac{1 + 3}{2} $$ and $$y = \dfrac{2- 2}{2}$$
    $$\therefore x = \dfrac{4}{2}$$ and $$y = \dfrac{0}{2}$$
    $$\therefore x = 2$$ and $$y = 0$$
    $$\therefore P(x, y) = (2, 0)$$
  • Question 7
    1 / -0
    If $$A = (-3, 4), B = (-1, -2), C = (5, 6), D = (x, -4)$$ are vertices of a quadrilateral such that $$\Delta ABD = 2 \Delta ACD$$. Then $$x$$, is equal to:
    Solution
    Using $$ar\left( \Delta  \right) =\cfrac { 1 }{ 2 } \left| { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( y_{ 1 }-{ y }_{ 2 } \right)  \right| $$
    $$ar\left( \Delta ABD \right) =\cfrac { 1 }{ 2 } \left| \left( -3 \right) \left( -2+4 \right) +\left( -1 \right) \left( -4-4 \right) +x\left( 4-(-2) \right)  \right| $$
    $$=\cfrac { 1 }{ 2 } \left| 2+6x \right| $$
    $$=\left| 1+3x \right| \longrightarrow \left( i \right) $$
    $$ar\left( \Delta ACD \right) =\cfrac { 1 }{ 2 } \left| \left( -3 \right) \left( 6+4 \right) +5\left( -4-4 \right) +x\left( 4-6 \right)  \right| $$
    $$=\cfrac { 1 }{ 2 } \left| -70-2x \right| $$
    $$=\cfrac { 1 }{ 2 } \left| 70+2x \right| $$
    $$=35+x\longrightarrow \left( ii \right) $$
    $$\because \left| -1 \right| =1$$
    So,
         $$ar\left( \Delta ABD \right) =2\Delta (ACD)$$
         $$1+3x=70+2x$$
         $$69=x$$
     $$\therefore \quad x=69$$

  • Question 8
    1 / -0
    For $$A(1,2)$$ and $$B(3,-2)$$, the coordinates of the midpoint of $$AB$$ are is ..........
    Solution
    Given : $$A=(1,2)\equiv(x_1,y_1)$$ and $$B=(3,-2)\equiv(x_2,y_2)$$

    Let $$M=(x,y)$$ be the midpoint of $$AB$$

    $$x=\left ( \dfrac{x_1+x_2}{2}\right )$$ and $$\ y=\left ( \dfrac{y_1+y_2}{2}\right )$$

    Then, $$x=\dfrac{1+3}{2}$$ and $$y=\dfrac{2-2}{2}$$

    $$\implies x=2$$ and $$y=0$$

    $$\therefore M=(2,0)$$

    $$\therefore$$ Coordinates of the midpoint of $$AB$$ is $$\left( 2,0 \right) $$
  • Question 9
    1 / -0
    If $$C$$ is a point on the line segment joining $$A(-3,4)$$ and $$B(2,1)$$ such that $$AC=2BC$$, then the coordinates of $$C$$ is
    Solution
    Here we apply the section formula: If a point $$C(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then we have 

    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  \&  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    Let the point is C( $$x,y$$), Which divides AB in the ratio of $$2:1$$.
    Then the coordinates of C are given by
    $$x= \dfrac{(2\times2)+(-3\times 1)}{2+1}=\dfrac{1}{3}$$
    $$y=\dfrac{(2\times 1)+(1\times 4)}{3}=2$$
    $$C \equiv\left (\dfrac{1}{3},2\right)$$

  • Question 10
    1 / -0
    Find the area (in square units) of the triangle whose vertices are $$(a, b+c), (a, b-c) $$ and $$(-a, c). $$
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times |[ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] |$$
    Given the vertices of triangle,
    $$A (a,b+c) ,B(a,b-c) ,C(-a,c)$$
    Therefore, area is given by
    $$=\dfrac { 1 }{ 2 } |\left[ a\left[ b-c-c \right] +a\left[ c-b-c \right] +(-a)\left[ b+c-b+c \right]  \right]| \\ =\dfrac { 1 }{ 2 } |\left[ a(b-2c)+a(-b)-a(2c) \right]| \\ =\dfrac { 1 }{ 2 } |\left[ ab-2ac-ab-2ac \right]| =\left| \dfrac { -4ac }{ 2 }  \right| =2ac$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now