Self Studies

Coordinate Geometry Test - 40

Result Self Studies

Coordinate Geometry Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A$$ and $$B$$ are the points $$(-3,4)$$ and $$(2,1)$$, then the co-ordinates of the point $$C$$ on $$AB$$ produced such that $$AC=2BC$$ are 
    Solution
    Solution: 
                    Given  $$AC=2BC$$
                                  $$\dfrac{AC}{BC}=\dfrac{2}{1}$$

    So, C divides AB externally by $$2:1$$

    Coordinates of $$C=\left(\dfrac{mx_2-nx}{m-n},\dfrac{my_2-ny}{m-n}\right)$$

    where $$m:n=2:1$$ then $$(x_1,y_1)=(-3,4)$$, $$(x_2, y_2)=(2,1)$$
                                         
                               $$C=\left(\dfrac{2(2)-1(-3)}{2-1},\dfrac{2(4)-1(4)}{2-1}\right)\\$$
                               $$C=(7,-2)\\$$
                               Answer C
  • Question 2
    1 / -0
    The coordinate of point which divides the line segment joining points $$A(0,0)$$ and $$B(9,12)$$ in the ratio $$1:2$$, are
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the

    line joining the points $$A({ x }_{ 1 },{ y }_{ 1 })$$ and $$B({ x }_{ 2 },{ y

    }_{ 2 })$$ in the ratio $$ m:n $$, then $$(x,y) = \left( \cfrac { m{ x }_{ 2

    }+n{ x }_{ 1 } }{ m+n } ,\cfrac { m{ y }_{ 2 }+n{ y }_{ 1 } }{ m+n } 

    \right) $$

    Let the required point be $$C (x,y) $$ which divides the line segment joining points $$A(0,0)$$ and $$B(9,12)$$ in ratio $$1:2$$

    $$m_1=1, m_2=2$$

    Then we can calculate the coordinates of $$C$$ using section formula
    $$(x,y)=\left[\dfrac{m_1\times x_2+m_2\times x_1}{m_1+m_2}, \dfrac{m_1\times y_2+m_2\times y_1}{m_1+m_2}\right]$$

    $$(x,y)=\left[\dfrac{1\times 9+2\times 0}{1+2}, \dfrac{1\times 12+2\times 0}{1+2}\right]$$

    $$(x,y)=(3,4)$$

    Hence, coordinates of $$C$$ will be $$(3,4)$$.
  • Question 3
    1 / -0
    Find the area of the triangle formed by joining the mid points of the sides of the triangle whose vertices are $$(0.-1), (2, 1) and (0, 3)$$
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Also, we know $$\\Area\>of\>triangle\>=4\times\>of\>triangle\>formed\>using\>mid-point\>\\=4\times(\frac{1}{2})[x_1(y_2-y_3)+x_2(y_3+y_1)+x_3(y_1-y_2)]\\=2[0+2(3-1)+0]=8sq\>unit$$
  • Question 4
    1 / -0
    If $$(1, 2), (4, y), (x, 6) $$ and $$(3, 5)$$ are the vertices of a parallelogram taken in order find $$x\ and\ y$$ 
    Solution
    Coordinates of M are mid points of BD
    $$\therefore M=\left( \cfrac { 4+3 }{ 2 } ,\cfrac { 5+y }{ 2 }  \right) \\ $$
    Coordinates of M are mid points of AC
    $$\therefore  M=\left( \cfrac { 1+x }{ 2 } ,\cfrac { 2+6 }{ 2 }  \right) \\ $$
    $$\therefore \cfrac { 1+x }{ 2 } =\cfrac { y+3 }{ 2 } \\ so\quad x=6\\ \cfrac { 5+y }{ 2 } =\cfrac {2+6 }{ 2 }\\
    \therefore y=3$$

  • Question 5
    1 / -0
    If $$A(-2, 1), B(a, 0), C(4, b)$$ and $$D(1, 2)$$ are the vertices of a parallelogram ABCD taken in order, find the values of $$a$$ and $$b.$$ 
    Solution
    Midpoint formula $$X=\left ( \dfrac{x_1+x_2}{2}\right ) and \ Y=\left ( \dfrac{y_1+y_2}{2}\right )$$

    Coordinates of $$M$$ are mid points of $$AC$$
    $$ M=\left( \cfrac { 4-2 }{ 2 } ,\cfrac { b+1 }{ 2 }  \right) $$
    As the diagonals of parallelogram bisect each other,
    Coordinates of $$M$$ are mid points of $$BD$$ aswell

    $$ M=\left( \cfrac { a+1 }{ 2 } ,\cfrac {0+2}{ 2 }  \right) $$

    Equating $$X$$- coordinates:
    $$ \cfrac { 4-2 }{ 2 } =\cfrac { a+1 }{ 2 } $$
    $$a+1 =2$$
    $$a=1$$

    Equating $$Y$$- coordinates: 

    $$\cfrac { b+1 }{ 2 } =\cfrac { 0+2 }{ 2 }$$
    $$b+1 =2$$
    $$ b=1$$

  • Question 6
    1 / -0
    Find the area of the triangle whose vertices are $$(-5, -1), (3, -5), (5, 2)$$
    Solution

    Area of a triangle whose vertices are  $$A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$$ is given as,

    $$Area=(\dfrac{1}{2})[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)] $$

    Let $$A$$ be the required area

    $$A=(\dfrac{1}{2})[(-5)(-5-2)+3(2+1)+5(-1+5)]\\ (\dfrac{1}{2})[35+9+20]\\=32sq\>unit$$

    So, the correct option is (B)

  • Question 7
    1 / -0
    Find the Co-ordinate of the points $$O$$ bisection of the line segment joining $$(4, -1)$$ and $$(-2, -3)$$.
    Solution

    $$\\ mid-point\\=\left (\dfrac{4+(-2)}{2}),\dfrac{-1+(-3)}{2}\right)\\=(1,-2)$$

  • Question 8
    1 / -0
    If $$(3, -4)$$ and $$(-6, 5)$$ are the extremities of a diagonal of a parallelogram and $$(2, 1)$$ is its third vertex, then its fourth vertex is?
    Solution

  • Question 9
    1 / -0
    If the vertices of a triangle are $$(1,2),(4,-6)$$ and $$(3,5)$$, then its area is
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Therefore, area of required triangle is given by
    Area $$ = \dfrac{1}{2} \times [ 1 (-6 - 5) + 4(5 - 2) + 3(2 + 6) ] $$
    $$=\dfrac{1}{2}[-11+12+24]$$
    $$=\dfrac{1}{2}\times25$$
    $$=\dfrac{25}{2}\ sq.unit$$
  • Question 10
    1 / -0
    If $$A(-2,4), B(0,0)$$ and $$C(4,2)$$ are the vertices of a $$\triangle{ABC}$$, then find the length of median through the vertex $$A$$.
    Solution
    $$D=$$slid $$ht$$ of $$BC$$
    $$D\cong \left (\dfrac {0+4}{2}, \dfrac {0+2}{2}\right)$$
    $$=(2, 1)$$
    $$\therefore \ $$ Length of median $$=$$ Light of $$AD$$
    $$=\sqrt {(-2 -2)^2 +(4-1)^2}$$
    $$=\sqrt {4^2 +3^2}$$
    $$=5$$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now