Self Studies

Coordinate Geometry Test - 41

Result Self Studies

Coordinate Geometry Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mid-point of the line $$(a, 2)$$ and $$(3, 6)$$ is $$(2, b)$$. Find the numerical values of $$a$$ and $$b$$.
    Solution
    Mid-point of $$(a,2)$$ and $$(3,6)$$ is $$(2,b)$$
    =>$$(2,b)=\left( \cfrac { a+3 }{ 2 } ,\cfrac { 2+6 }{ 2 }  \right) \\ =>a=4-3,b=4\\ =>a=1,b=4$$
  • Question 2
    1 / -0
    The mid-point of the line segment joining the point $$\left( {3m,6} \right)$$ and $$\left( { - 4,3n} \right)$$ is $$(1,2m - 1)$$. Find $$(m,n)$$.
    Solution
    Mid-point of any two points $$(x_1, y_1)$$ and $$(x_2, y_2)$$ is given by
    $$(m, n)=\left (\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2} \right)$$

    Since $$(1,2m-1)$$ is midpoint of $$(3m, 6)$$ and $$(-4, 3n)$$, then :

    Taking $$x$$ coordinates,
    $$1=\dfrac{3m-4}{2},$$
    $$2=3m-4,$$
    $$3m=4+2$$
    $$3m=6$$
    $$m=2$$

    Similarly,
    Taking $$y$$ coordinates,
    $$2m-1=\dfrac{6+3n}{2},$$
    $$4m-2=6+3n,$$
    $$4\times2-2=6+3n,$$                     ($$m=2$$)
    $$3n+6=6$$
    $$n=0$$

    Hence, $$(m ,n)=(2,0)$$
  • Question 3
    1 / -0
    If the  points $$(2, 5), (4, 6)$$ and $$(a, a)$$ are collinear, then find the value of $$a$$.
    Solution
    Points: $$A = (2,5), B = (4,6),C = (a, a)$$ collinear
    $$\therefore$$ area of $$\triangle ABC = 0$$
    $$\Rightarrow \ \dfrac {1}{2} [x_1(y_2-y_3)+x_2 (y_3-y_1)+x_3(y_1-y_2)]=0$$
    $$\Rightarrow \ \dfrac {1}{2} [2(6-a)+4(a-5)+a(5-6)]=0$$
    or,   $$12-2a+4a-20+5a-6a=0$$
         $$-8+a=0$$
    $$\boxed {a=8}$$ 
    Option $$D$$ is correct

  • Question 4
    1 / -0
    Area of the triangle formed by $$(x_{1,}y_{1}),(x_{2},y_{2}), (3y_{2},(-2y_{1}))$$
    Solution

    We have,

    $$ A\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}} \right)=\left( {{x}_{2}},{{y}_{2}} \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}} \right)=\left( 3{{y}_{2}},-2{{y}_{1}} \right) $$

    We know that the area of triangle is

    $$ Area\,of\,\Delta ABC=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}+2{{y}_{1}} \right)+{{x}_{2}}\left( -2{{y}_{1}}-{{y}_{1}} \right)+3{{y}_{2}}\left( {{y}_{1}}-{{y}_{2}} \right) \right] $$

    $$ =\dfrac{1}{2}\left[ {{x}_{1}}{{y}_{2}}+2{{x}_{1}}{{y}_{1}}-3{{x}_{2}}{{y}_{1}}+3{{y}_{2}}{{y}_{1}}-3{{y}_{2}}^{2} \right] $$

    Hence, the is the answer

  • Question 5
    1 / -0
    The length of the median from the vertex A of a triangle whose vertices are $$A (-1, 3),$$ B $$(1, -1)$$ and C$$(5,1)$$ is 
    Solution
    Length of the median from the vertex $$A$$ of a triangle $$\triangle{ABC}$$
    Let $$AD$$ be the median.

    $$\Rightarrow\,D$$ is the midpoint of $$BC$$

    Using midpoint formula,$$D=\left(\dfrac{1+5}{2},\,\dfrac{-1+1}{2}\right)=\left(3,\,0\right)$$

    Length of median $$=AD=\sqrt{{\left(-1-3\right)}^2{}+{\left(0-3\right)}^{2}}=\sqrt{16+9}=\sqrt{25}=5 $$ units.

  • Question 6
    1 / -0
    Find the area of the triangle formed by the mid points of sides of the triangle whose vertices are $$(2, 1)$$, $$(-2, 3)$$, $$(4, -3)$$.
  • Question 7
    1 / -0
    Find the coordinates of the point $$P$$ which divides the join of $$A(-2,5)$$ and $$B(3,-5)$$ in the ratio $$2:3$$
    Solution
    Given that $$A(-2,5) \quad B(3,-5)$$

    Using section formula   (m:n) if ratio, then points are

    $$x=\dfrac{mx_{2}+nx_{1}}{m+n}$$

    $$x=\dfrac{2\times 3+3(-2)}{2+3}$$

    $$=\dfrac{6-6}{5}$$

    $$\therefore x=0$$

    $$y=\dfrac{my_{2}+ny_{1}}{m+n}$$

    $$y= \dfrac{2(-5)+3(5)}{2+3}$$

    $$= \dfrac{-10+15}{5}$$

    $$\therefore y=\dfrac{5}{5}=1$$

    $$\therefore P\rightarrow (0,1)$$
  • Question 8
    1 / -0
    The midpoints of the sides of a triangle are $$\left(1,1\right),\left(4,3\right)$$ and $$\left(3,5\right)$$. The area of the triangle is ___ square units.
    Solution

  • Question 9
    1 / -0
    If $$P(1,2),Q(4,6),R(5,7)$$ and $$S(a,b)$$ are the vertices of a parallelogram $$PQRS$$, then
    Solution
    R.E.F image 
    $$  \dfrac{P+R}{2} = \dfrac{Q+5}{2} $$ 
    $$  \dfrac{1+5}{2} = \dfrac{4+a}{2} \Rightarrow a = 2 $$
    $$  \dfrac{b+6}{2}=\dfrac{7+2}{2} \Rightarrow b = 3 $$

  • Question 10
    1 / -0
    If A (-2, 1) B (1 , 0), C (x , 3 ) and D (1, Y) are the vertices of a Parallelogram ABCD, then find the values of x and y.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now