Self Studies

Coordinate Geometry Test - 42

Result Self Studies

Coordinate Geometry Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$A(3,4)$$ and $$B(5,-2)$$ are two given points. If $$AP=PB$$ and area of $$\triangle {PAB}=10$$, then $$P$$ is -
    Solution
    Let the coordinate P be $$(x,y)$$
    Since it is given that $$PA=PB$$
    So, by using distance formula 
    $$P(x,y)$$ and $$A(3,4)$$
    $$PA=\sqrt{(3-x)^2+(4-y)^2}$$
    $$P(x,y)$$ and $$B(5,-2)$$
    $$PA=\sqrt{(5-x)^2+(-2-y)^2}$$
    then,
    $$\sqrt{(3-x)^2+(4-y)^2}=\sqrt{(5-x)^2+(-2-y)^2}$$
    Squaring both sides
    $$(3-x)^2+(4-y)^2=(5-x)^2+(-2-y)^2$$
    $$9+x^2-6x+16+y^2-8y=25+x^2-10x+4+y^2+4y$$
    $$-6x-8y=-10x+4+4y$$
    $$4x-12y=4$$
    $$x-3y=1.......(1)$$
    Area of $$\triangle {PAB}=10$$
    Area of triangle of (3,4),(5,-2) and (x,y)
    Area of triangle $$=\dfrac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]$$
    $$10=\dfrac{1}{2}[3(-2-y)+5(y-4)+x(4+2)]$$
    $$-6+2y-20+6x=20$$
    $$6x+2y=46$$
    $$3x+y=23......(2)$$
    Since $$x-3y=1\Rightarrow x=3y+1$$
    Equation (2) implies
    $$3(3y+1)+y=23$$
    $$9y+3+y=23$$
    $$10y=20$$
    $$y=2$$
    $$x=3y+1$$
    $$x=3\times2+1$$
    $$x=7$$
    Therefore, the coordinates are $$(7,2)$$.
  • Question 2
    1 / -0
    If the area of triangle formed by the points $$(2a,b),(a+b,2b+a)$$ and $$(2b,2a)$$ be $$\lambda$$ then the area of the triangle whose vertices are $$(a+b,a-b), (3b-a,b+3a)$$ and $$(3a-b,3b-a)$$ will be
    Solution
    Area of $$ \triangle  \,= \dfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}) \right |$$
    Given area of triangle whose vertices are $$ (2a,b), (a+b,2b+a), (2b,2a)$$ is $$ \lambda $$
    $$\therefore \lambda  = \dfrac{1}{2}\left | 2a(2b+a-2a)+(a+b)(2a-b)+2b(b-2b-a) \right |  $$
    $$ \lambda  = \dfrac{1}{2}\left | 4ab+2a^{2}-4a^{2}+2a^{2}-ab+2ab-b^{2}+2b^{2}-4b^{2}-2ab \right |$$
    $$ \lambda  = \dfrac{1}{2}\left | 3ab - 3b^{2} \right | $$ __ (1)
    Now area of triangle whose vertices are $$ (a+b,a-b), (3b-a,b+3a), (3a-b,3b-a)$$ is given by
    Area $$ = \dfrac{1}{2}\left | (a+b)(b+3a-3b+a)+(3b-a)(3b-a-a+b)+(3a-b)(a-b-b-3a) \right |$$
    $$ = \dfrac{1}{2}\left | (a+b) (-2b+4a)+(3b-a)(4b-2a)+(3a-b)(-2a-2b) \right |$$
    $$ = \dfrac{1}{2}\left | -2ab+4a^{2}-2b^{2}+4ab+12b^{2}-6ab-4ab+2a^{2}-6a^{2}-6ab+2ab+2b^{2} \right |$$
    $$ = \dfrac{1}{2}\left | 12b^{2}-12ab \right |$$
    $$ = \dfrac{4}{2}\left | -(3ab-3b^{2}) \right |$$
    $$ = 4.\dfrac{1}{2}\left | 3ab-3b^{2} \right |$$
    $$ = 4 \lambda .$$
  • Question 3
    1 / -0
    In a triangle $$ABC,A=(3,2),B=(1,4)$$ and the midpoint of $$AC$$ is $$(2,5)$$, then the mid point of $$BC$$ is
    Solution
    $$D(2,5)$$ is mid-point of AC
    so using mid-point formula
    $$\dfrac{x+3}{2}= 2$$
    $$x+3=4$$
    $$x=1$$
    $$\dfrac{y+2}{2}=5$$
    $$y+2=10$$
    $$y=8$$
    $$\therefore (x,y)= (1,8)$$
    Let $$p(x_{1},y_{1})$$ be mid-point of $$BC$$
    by using mid-point formula
    $$x_{1}=\dfrac{1+1}{2}=\dfrac{2}{2}= 1$$
    $$y_{1}=\dfrac{8+4}{2}= \dfrac{12}{2}=6$$
    $$p(x_{1},y_{1})= (1,6)$$

  • Question 4
    1 / -0
    If $$A ( - 2, 5), B (3, 1)$$ and $$P,Q$$ are the points of intersection of $$AB$$ then mid-point of $$PQ$$ is
    Solution

  • Question 5
    1 / -0
    The area of the triangle vertices $$(1,0),(7,0)$$ and $$(4,4)$$ is ___ square units.
    Solution

  • Question 6
    1 / -0
    If $$A = ( 3 , - 4 )$$ and the midpoints of $$A B , A C$$ are $$( 2 , - 1 ) , ( 4 , - 5 )$$ respectively then the mid.point of $$B C$$ is 
    Solution
    If $$P\left( {{x_1},{y_1}} \right)$$ and $$Q\left( {{x_2},{y_2}} \right)$$ are two points in the cartesian plane then their mid-point $$A\left( {{x},{y}} \right)$$ is given by,
    $$\left( {x , y} \right) = \left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$$

    Given:
    Mid point of $$AB=(2, -1)$$
    $$A=(3, -4)$$
    Let the coordinates of the point $$B$$ be $$(x_2, y_2).$$
    $$\left(\dfrac{3+x_2}{2}, \dfrac{y_2-4}{2}\right)=(2, -1)$$
    $$\Rightarrow x_2+3=4$$ and $$y_2-4=-2$$
    $$\Rightarrow x_2=1$$ and $$y_2=2$$
    $$\therefore B(1, 2)$$

    Also,
    $$A=(3, -4)$$
    Mid point of $$AC$$ $$=(4, -5)$$
    Let the coordinates of the point $$C$$ be$$(x_3, y_3).$$
    $$\left(\dfrac{3+x_3}{2}, \dfrac{y_3-4}{2}\right)=(4, -5)$$
    $$\Rightarrow x_3 + 3=8$$ and $$y_3 - 4=-10$$
    $$\Rightarrow x_3 = 5$$ and $$y_3 = -6$$
    $$\therefore C(5, -6)$$

    Now, by using the coordinates of the point $$B$$ and $$C,$$
    Mid point of $$BC$$ $$=\left(\dfrac{1+5}{2}, \dfrac{2-6}{2}\right)$$
                                 $$=\left(\dfrac{6}{2}, \dfrac{-4}{2}\right)$$
                                 $$=(3, -2)$$
  • Question 7
    1 / -0
    The co -ordinates of the midpoint of a line segment joining $$ P(5,7) $$ and $$ Q (-3,3) $$ are........
    Solution
    Given,

    $$P(5,7),Q(-3,3)$$

    mid point is given by,

    $$(x,y)=\left ( \dfrac{5-3}{2},\dfrac{7+3}{2} \right )$$

    $$\Rightarrow (x,y)=(1,5)$$
  • Question 8
    1 / -0
    The area of the quadrilateral formed by the points $$(1,1),(7,-3),(12,2)$$ and $$(7,21)$$ is 
    Solution

  • Question 9
    1 / -0
    The point which divides the line segment joining $$(-2, 4), (2, 7)$$ in the ratio $$2:1$$ internally is:
    Solution

  • Question 10
    1 / -0
    In the given figure (not drawn to scale), the coordinates of P, Q and R are (3, 0) (0, 5) and (0, -5) respectively. Find the area of $$\Delta PQR$$.

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now