Self Studies

Coordinate Geometry Test - 43

Result Self Studies

Coordinate Geometry Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points $$( - a , - b ) , ( 0,0 ) , ( a , b ) , \left( a ^ { 2 } , a b \right)$$ are
    Solution

  • Question 2
    1 / -0
    If $$P \left( \dfrac{a}{3},\dfrac{b}{2} \right)$$ is the mid-point of the line segment joining $$A(-4,3)$$ and $$B(-2,4)$$, then $$(a,b)$$ is 
    Solution
    Using the midpoint formula, $$\left(x,y\right)=\left(\dfrac{{x}_{1}+{x}_{2}}{2},\dfrac{{y}_{1}+{y}_{2}}{2}\right)$$ where $${x}_{1}=-4$$,$${y}_{1}=3$$,$${x}_{2}=-2$$, $${y}_{2}=4$$
    Given $$P$$ is a mid-point of $$AB$$
    $$\Rightarrow P\left(\dfrac{a}{3},\dfrac{b}{2}\right)=\left(\dfrac{-4-2}{2},\dfrac{3+4}{2}\right)=\left(-3,\dfrac{7}{2}\right)$$
    Equating the $$x$$ and $$y$$ coordinates, we get
    $$\Rightarrow \dfrac{a}{3}=-3,\dfrac{b}{2}=\dfrac{7}{2}$$
    $$\Rightarrow a=-9,b=7$$
    $$\therefore \left(a,b\right)=\left(-9,7\right)$$

  • Question 3
    1 / -0
    The line segment joining the points $$(1, 2)$$ and $$(k, 1)$$ is divided by the line $$3x + 4y - 7 = 0$$ in the ratio $$4 : 9$$ then $$k$$ is 
    Solution

  • Question 4
    1 / -0
    If area of a triangle is $$35$$ square units with vertices $$\left( {2, - 6} \right),\,\,\left( {5,\,\,4} \right)$$ and $$({k},\,\,4)$$ then $${k}$$ is :
    Solution

  • Question 5
    1 / -0
    If the ratio in which the line segment joining the points (6,4) and (x,-7) divided internally by y-axis is 6: 1, then x equals
    Solution

  • Question 6
    1 / -0
    If $$(-6,-4)$$ and $$(3,5)$$ are the extremities of the diagonals of a parallelogram and $$(-2,1)$$ is its third vertex, then its fourth vertex is 
    Solution
    Given,

    $$P(-6,-4),Q(3,5),R(-2,1),S(\alpha ,\beta )$$

    Let $$P$$ and $$Q$$ are the extremities of diagonals of a parallelogram, and 

    $$R$$ and $$S$$ will be the extremities of diagonals of a parallelogram

    Now,

    midpoint of $$PQ=\dfrac{3-6}{2},\dfrac{5-4}{2}=\dfrac{-3}{2},\dfrac{1}{2}$$

    midpoint of $$RS\Rightarrow \dfrac{-2+\alpha }{2}=-\dfrac{3}{2}$$

    $$\Rightarrow \alpha =-3+2=-1$$

    Now,

    $$\dfrac{1 +\beta }{2}=\dfrac{1}{2}$$

    $$\Rightarrow \beta =0$$

    Therefore, coordinates of 4th vertex is $$(-1,0)$$
  • Question 7
    1 / -0
    If $$P\left(\dfrac{a}{3},4\right)$$  is the mid point of the line segment joining the points $$(-6,5),(-2,3).$$ Then, find the value of $$a.$$
    Solution
    Given: $$P(x,y)$$ is md-point of $$QR$$ then $$\left(\dfrac{a}{3}, 4\right) = \left(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\right)$$

    $$\Rightarrow \left(\dfrac{a}{3}, 4\right) = \left(\dfrac{-6-2}{2}, \dfrac{5+3}{2}\right)$$

    $$\Rightarrow \dfrac{a}{3} = \dfrac{-8}{2}$$

    $$\Rightarrow a = -4 \times 3 = -12$$
  • Question 8
    1 / -0
    The mid-point of the line joining the points $$(2p +2, 3)$$ and $$(4, 2q + 1)$$ is $$(2p, 2q)$$, then
    Solution

  • Question 9
    1 / -0
    If the mid point of $$(6, 8)$$ and $$(8, 6)$$ is mid point of $$(10, 3)$$ and $$(x, y)$$, then $$x + y$$ is
    Solution

  • Question 10
    1 / -0
    The area of a triangle with vertices $$A(5,0),B(8,0)$$ and $$C(8,4)$$ in square units is 
    Solution
    Area of Triangle using coordinates of A, B and C
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$--------(1)
    Here in our case $$ A(5,0) = (x_1, y_1)$$
                                 $$ A(8,0) = (x_2, y_2)$$
                                 $$ A(8,4) = (x_3, y_3)$$

    Substituting above values in Eq - 1, we get
    Area $$ = 0.5 [ 5(0-4) + 8(4-0) + 8(0-0)]$$
    Area $$ = 0.5 [ -20 + 32]$$
    Area $$ = 0.5 \times (12)=6$$
    $$ Area =  6 $$ square units.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now