Self Studies

Coordinate Geometry Test - 44

Result Self Studies

Coordinate Geometry Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area of the triangle with vertices $$(-2,2), (1,5)$$ and $$(6,-1)$$ is 
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

    $$=\dfrac{1}{2} [-2(5+1) + 1(-1-2)+6(2-5)]$$

    $$=\dfrac{1}{2}[-12-3-18]$$

    $$=-\dfrac{33}{2}$$

    $$\therefore$$ Area $$=\dfrac{33}{2}~sq.\, units$$
  • Question 2
    1 / -0
    Select the correct option.
    The value of $$p$$, for which the points $$A(3,1) , B (5, p)$$ and $$C (7, -5)$$ are collinear, is 
    Solution
    $$A (3, 1) \,\, B (5, P) \,\, C (7, -5)$$

    If points $$A(x_1,y_1),\,B(x_2,y_2),\,C(x_3,y_3)$$ are collinear then
    $$ar(\triangle ABC)=\dfrac12[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=0$$

    $$\dfrac{1}{2} [3[5 + p) + 5(-5 - 1) + 7 (1- p)] = 0$$

    $$15 + 3p - 30 + 7 - 7p = 0$$

    $$4p = -15 + 7$$

    $$4p = -8$$

    $$p = -2$$
  • Question 3
    1 / -0
    Three consecutive vertices of a parallelogram $$ABCD$$ are $$A(3,-2), B(4,0)$$ and $$C(6,-3)$$. The 4th vertex $$D$$ is
    Solution
    Let the 4th vertex be $$D(x,y)$$. Then
    mid point of $$AC$$= midpoint of $$BD$$
    Midpoint formula = $$\left(\dfrac {x_1+x_2}2,\dfrac {y_1+y_2}2\right)$$
    $$\cfrac { 4+x }{ 2 } =\cfrac { 3+6 }{ 2 } ;\cfrac { 0+y }{ 2 } ;\cfrac { -2-3 }{ 2 } \quad \Rightarrow x=(9-4)=5  $$ and $$ y=-5$$
    point $$D$$ is $$D(5,-5)$$

  • Question 4
    1 / -0
    If the points $$A(-2,3)$$, $$B(1,2)$$ and $$C(k,0)$$ are collinear, then $$k=$$?
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$

    Here $$\left( { x }_{ 1 }=-2,{ y }_{ 1 }=3 \right) ;\left( { x }_{ 2 }=1,{ y }_{ 2 }=2 \right) ;\left( { x }_{ 3 }=k,{ y }_{ 3 }=0 \right) $$

    If three points are collinear then, area of triangle formed by them as vertices will be equal to zero

     $$Ar\left( \triangle ABC \right) =0\\\Rightarrow \dfrac{1}{2} \left [ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right] =0\quad \quad $$

    $$\Rightarrow \left[ -2(2-0)+1(0-3)+k(3-2) \right] =0\\\Rightarrow -4-3+k=0\\\Rightarrow k=7$$
  • Question 5
    1 / -0
    The vertices of a $$\triangle ABC$$ are $$A(3,8),B(-4,2)$$ and $$C(5,-1)$$. The area of $$\triangle ABC$$ is
    Solution
    Here $$\left( { x }_{ 1 }=3,{ y }_{ 1 }=8 \right) ;\left( { x }_{ 2 }=-4,{ y }_{ 2 }=2 \right) ;\left( { x }_{ 3 }=5,{ y }_{ 3 }=-1 \right) $$
    $$Ar\left( \triangle ABC \right) =\cfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right] $$
    $$=\cfrac { 1 }{ 2 } \left[ 3(2+1)-4(1-8)+5(8-2) \right] =\cfrac { 1 }{ 2 } (9+36+30)=\cfrac { 75 }{ 2 } =37\cfrac { 1 }{ 2 } $$
  • Question 6
    1 / -0
    The area of quadrilateral ABCD with $$A(1,1),B(7,-3),C(12,2)$$ and $$D(7,21)$$ as its vertices is
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Area of the $$\left( \triangle ABC \right) =\cfrac { 1 }{ 2 } \left[ 1(-3-2)+7(2-1)+12(1+3) \right] =25\quad $$ sq. units
    Area of $$\quad \left( \triangle BCD \right) =\cfrac { 1 }{ 2 } \left[ 7(2-21)+12(21+3)+7(-3-2) \right] =60$$ sq. units
    Area of the quad $$ABCD=ar\left( \triangle ABC \right) +ar\left( \triangle BCD \right) =85$$ sq. units
  • Question 7
    1 / -0
    In $$\triangle ABC$$ having vertices $$A(-1,3), B(1,-1)$$ and $$C(5,1)$$, the length of the median $$AD$$ is
    Solution
    Midpoint formula : $$\left(\dfrac {x_1+x_2}2,\dfrac {y_1+y_2}2\right))$$
    Mid point of $$BC$$ is $$D\left( \cfrac { 1+5 }{ 2 } ,\cfrac { -1+1 }{ 2 }  \right) \quad \Rightarrow D\left( 3,0 \right) $$
    median $$AD=\sqrt { { \left( -1-3 \right)  }^{ 2 }+{ \left( 3-0 \right)  }^{ 2 } } =\sqrt { { \left( -4 \right)  }^{ 2 }+{ \left( 3 \right)  }^{ 2 } } =\sqrt { 25 } =5\quad $$ unit
  • Question 8
    1 / -0
    In $$\triangle ABC$$, its vertices are $$A(7,-3),B(3,-1)$$ and $$C(5,3)$$. If $$BE$$ is one of it's medians, then $$BE=$$?
    Solution
    Mid point of $$AC$$ is $$E\left( \cfrac { 7+5 }{ 2 } ,\cfrac { -3+3 }{ 2 }  \right) \quad \Rightarrow E\left( 6,0 \right) $$
    median $$BE=\sqrt { { \left( 6-3 \right)  }^{ 2 }+{ \left( 0+1 \right)  }^{ 2 } } =\sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( 1 \right)  }^{ 2 } } =\sqrt { 9+1 } =\sqrt{10}$$ units
  • Question 9
    1 / -0
    One end of the diameter of a circle is $$A(4,1)$$ and its centre is $$C(3,3)$$. The coordinates of the other end of the diameter is
    Solution
    Let, the other end of the diameter be $$B(x,y)$$.
    We know that centre of the circle is the mid point of the diameter. So, the formula for mid-point can be used to find the co-ordinates of $$B$$ as follows:
    $$\cfrac { 4+x }{ 2 } =3$$
    $$x+4=6$$
    $$x=2$$

    $$\cfrac { 1+y }{ 2 } =3$$
    $$y+1=6$$
    $$y=5$$
    Hence, the other end of the diameter is $$B(2,5)$$
  • Question 10
    1 / -0
    A point$$P$$ divides the join of $$A(5,-2)$$ and $$B(9,6)$$ in the ratio $$3:1$$. The coordinates of $$P$$ are
    Solution
    coordinates of $$P$$ are $$P(x,y)$$ where
    $$x=\cfrac { 3\times 9+1\times 5 }{ 3+1 } =\cfrac { 32 }{ 4 } =8;y=\cfrac { 3\times 6+1\times (-2) }{ 3+1 } =\cfrac { 16 }{ 4 } =4\quad $$
    the required point is $$P(8,4)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now