Self Studies

Coordinate Geometry Test - 45

Result Self Studies

Coordinate Geometry Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A$$ and $$B$$ are two points having co-ordinates $$(3,4)$$ and $$(5,-2)$$ respectively and $$P$$ is a point such that $$PA=PB$$ and area of triangle $$PAB=10$$ square units, then the co-ordinates of $$P$$ are
    Solution

  • Question 2
    1 / -0
    Length of the median from $$B$$ on $$AC$$ where $$A(-1, 3), B(1, -1), C(5, 1)$$ is 
    Solution

  • Question 3
    1 / -0
    A line intersects the y-axis and x-axis at points P and Q respectively . If $$ (2 , -5) $$ is the mid-point of PQ , then co-ordinates of P and Q are respectively.
    Solution
    $$P$$ lies on y-axis so co-ordinates of $$P$$ are $$(0, y)$$
    Similarly, co-ordinates of $$Q$$ lies on x-axis $$= Q(x, 0)$$
    Mid-point of $$PQ$$ is
    $$M\left(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\right) = M(2,-5)$$ which is given

    $$\Rightarrow M\left(\dfrac{0+x}{2} , \dfrac{y+0}{2}\right) = M(2,-5)$$

    $$\Rightarrow \left(\dfrac{x}{2}, \dfrac{y}{2}\right) = M(2, -5)$$

    Comparing both side, we get
    $$\dfrac{x}{2} = 2$$ and $$\dfrac{y}{2} = -5$$

    $$\Rightarrow x = 4$$ and $$y = -10$$

    Hence, the co-ordinates of $$P(0, -10)$$ and $$Q(4, 0)$$ verifies ans (d)
  • Question 4
    1 / -0
    The point which lies on the perpendicular bisector of the line segment joining the points A $$(-2 , -5) $$ and B$$(2 , 5) $$ is 
    Solution
    The perpendicular bisector of $$AB$$ will pass through the mid-point of $$AB$$ . 
    Mid-point of $$A$$ $$ (x_1 , y_1) $$ and $$B$$$$(x_2 , y_2) $$ is given by 
    $$ \left  ( \dfrac{x_1 + x_2}{2} , \dfrac{y_1 + y_2}{2}  \right  ) $$ . 

    $$ = \left  ( \dfrac{-2 + 2}{2} , \dfrac{-5 + 5}{2}  \right  ) = (0 , 0) $$ 
    So , the perpendicular bisector passes through $$ (0 , 0) $$ 
    Hence, $$(0,0)$$ lies on the perpendicular bisector.
  • Question 5
    1 / -0
    the area of a triangle with vertices $$ (-3, 0),(3,0) $$ and $$ (0, k) $$ is $$ 9 $$ sq units. then the value of $$ k $$ will be 
    Solution
    We know that , area of a triangle with vertices $$ (a_1,y_1),(x_2,y_2) $$ and $$ (x_3,y_3) $$ is given by 
    $$ \Delta  = \frac {1}{2} \left| \begin{matrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{matrix} \right|  $$
    $$ \therefore  \Delta = \frac {1}{2} \left| \begin{matrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{matrix} \right|  $$
    Expanding along $$ R_1 $$
    $$ 9 = \frac {1}{2} [ -3 ( -k) - 0 +1 ( 3k) ] $$
    $$ \Rightarrow 18 = 3k + 3k = 6 k $$
    $$ \therefore K = \frac {18 }{6} = 3 $$
  • Question 6
    1 / -0
    The coordinates of the point which divides the join of $$(x_1 , y_1)$$ and $$(x_{2} , y_{2})$$ in the ratio $$m_{1} : m_{2}$$ internally are 
    Solution
    Let $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)$$ and $$B\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ are end points of segment AB.

    Let point P divides segment AB internally in the ratio $$m:n$$

    Thus, $$x$$ coordinate of point P is given by,
    $$x=\frac { m{ x }_{ 2 }+n{ x }_{ 1 } }{ m+n } $$

    Similarly, $$y$$ coordinate of point P is given by,
    $$y=\frac { m{ y }_{ 2 }+n{ y }_{ 1 } }{ m+n } $$

    Thus, coordinates of point P are $$P\left( \frac { m{ x }_{ 2 }+n{ x }_{ 1 } }{ m+n },\frac { m{ y }_{ 2 }+n{ y }_{ 1 } }{ m+n } \right) $$
  • Question 7
    1 / -0
    The coordinates of the midpoint of the line segment joining $$(-8, 13)$$ and $$(x, 7)$$ is $$(4, 10)$$ then what is the value of $$x$$​
    Solution
    Given: $$A(-8,13),\;B(x,7)$$ are points.

    Midpoint:- $$P(4,10)$$

    By using mid-point formula to calculate the $$x$$-coordinate of the midpoint,
    $$\begin{aligned}{}\frac{{ - 8 + x}}{2} &= 4\\ - 8 + x& = 8\\x& = 16\end{aligned}$$

    Hence the value of $$x$$ is equal to $$16.$$

  • Question 8
    1 / -0
    If points $$ (1,2),(-1, x) $$ and (2,3) are collinear, then $$ x $$ will be:
    Solution
    Let the points $$ A(1,2), B(1, x) $$ and $$ C(2,3) $$ are collinear then area of triangle made by these points will be zero. 
    $$ \Rightarrow \dfrac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] $$
    $$ \Rightarrow \dfrac{1}{2}[(x-3)+(-1)(3-2)+2(2-x)]=0 $$
    $$ \Rightarrow x-3-1+2(2-x)=0 $$
    $$ \Rightarrow x-3-1+4-2 x=0 $$
    $$ \Rightarrow-x-4+4=0 $$
    $$ \Rightarrow x=0 $$
    So, correct choice is (B)
  • Question 9
    1 / -0
    P divides internally the line segment which joins the points (5, 0) and (0, 4) in the ratio of 2 : 3 internally. Co-ordinates of point P is:
    Solution
    Let point P(x, y) divides the line segment joining the points A(5, 0) and B(0, 4) internally in the ratio 2 : 3.
    $$ \mathbf{then} $$               $$  \mathbf{ x = \dfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}} $$
                                $$  \mathbf{ = \dfrac{(2)(0) + (3)(5)}{2 + 3}} $$
                                $$  \mathbf{ = \dfrac{15}{5}} $$
    $$ \Rightarrow        \mathbf{ x = 3} $$
    $$ \mathbf{and} $$               $$  \mathbf{ y = \dfrac{m_{1}y_{2} + m_{2}x_{1}}{m_{1} + m_{2}}} $$
                                $$  \mathbf{ = \dfrac{(2)(4) + (3)(0)}{2 + 3}} $$
                                $$  \mathbf{ = \dfrac{8}{5}} $$
    Hence, co-ordinate of P is $$ \left (3. \dfrac{8}{5} \right ) $$
    Hence, correct choice is (A)
                     
  • Question 10
    1 / -0
    What will the co-ordinate of point A when $$ \mathrm{AB} $$ is a diameter of circle and coordinate of $$ \mathrm{B}(1,4) $$ and $$ \mathrm{co} $$ -ordinate of center $$ \mathrm{O} $$ is (2,-3)
    Solution
    Let co-ordinate of point A is (x, y) 
    By the mid point formula
    $$ 2=\dfrac{x+1}{2} $$
    $$ \Rightarrow x+1=4 $$
    $$ \Rightarrow x=4-1=3 $$
    and $$ -3=\dfrac{y+4}{2} $$
    $$ \Rightarrow y+4=-6 $$
    $$ y=-6-4=-10 $$
    $$ \therefore $$ co-ordinate of point $$ \mathrm{A}(3,-10) $$
    Hence correct choice is (D).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now