Let $$A({ x }_{ 1 }{ y }_{ 1 }),\quad B({ x }_{ 2 },{ y }_{ 2 })\quad and\quad C({ x }_{ 3 },{ y }_{ 3 })\quad $$ be the vertices of $$\triangle$$ABC.
Let D(1,2) ,E(0,-1) and F(2,-1) be the mid -points of sides BC,AC and AB
Since D is the mid point of BC.
$$A({ x }_{ 1 }{ y }_{ 1 }),\quad B({ x }_{ 2 },{ y }_{ 2 })\quad and\quad C({ x }_{ 3 },{ y }_{ 3 })\quad \\ \therefore \dfrac { { x }_{ 2 }+{ x }_{ 3 } }{ 2 } =1\quad and\quad \dfrac { { y }_{ 2 }+{ y }_{ 3 } }{ 2 } =2\\ \Longrightarrow { x }_{ 2 }+{ x }_{ 3 }=2\quad { y }_{ 2 }+{ y }_{ 3 }=4 \rightarrow$$ (i)
Similarly , E and F are the mid-points of CA and Ab respectively
$$\therefore \dfrac { { x }_{ 1 }+{ x }_{ 3 } }{ 2 } =0\quad and\quad \dfrac { { y }_{ 1 }+{ y }_{ 3 } }{ 2 } =-1\\ \Longrightarrow { x }_{ 1 }+{ x }_{ 3 }=2\quad and\quad { y }_{ 1 }+{ y }_{ 3 }-2 \rightarrow(2)\\ \therefore \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } =2\quad and\quad \dfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 } =-1\\ \Longrightarrow { x }_{ 1 }+{ x }_{ 2 }=4\quad and\quad { y }_{ 1 }+{ y }_{ 2 }=-2 \rightarrow(3)$$
From (1),(2),and(3)
$$({ x }_{ 2 }+{ x }_{ 3 })+({ x }_{ 1 }+{ x }_{ 3 })+({ x }_{ 1 }+{ x }_{ 2 })=2+0+4\\ ({ y }_{ 2 }+{ y }_{ 3 })+({ y }_{ 1 }+{ y }_{ 3 })+({ y }_{ 1 }+{ y }_{ 2 })=4-2-2\\ \Longrightarrow { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=3\quad and\quad { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 }=0 \rightarrow (4)$$
From (1) and (4)
$${ x }_{ 1 }+{ 2 }=3\quad and\quad { y }_{ 1 }+4=0\\ \Longrightarrow { x }_{ 1 }=1\quad and\quad { y }_{ 1 }=-4 \quad \therefore (1,-4)$$
From (2) and (4)
$${ x }_{ 2 }+0=3\quad and\quad { y }_{ 2 }-2=0\\ \Longrightarrow ({ x }_{ 2 },{ y }_{ 2 })=B(3,2)$$
From (3) and (4)
$${ x }_{ 3 }+4=3\quad and\quad { y }_{ 3 }-2=0\\ \therefore ({ x }_{ 3 },{ y }_{ 3 })=C(-1,2)$$
$$\therefore$$ Coordinate of $$\triangle$$ABC are $$\Rightarrow$$ $$(1,-4); B(3,2); C(-1,2)$$