Self Studies

Introduction to Trigonometry Test - 16

Result Self Studies

Introduction to Trigonometry Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a right triangle ABC, right-angled at B, cot2 A = . What is the value of cos A?
    Solution

    cot2A=916

    cot A = 34=BasePerpendicular

    Hypotenuse2=Base2+Perpendicular2

    H2=92+162=25

    H=25=5

    cos A = BaseHypotenuse=35

    Therefore, option A is correct.

  • Question 2
    1 / -0
    If a = (cosec θ + cot θ) and b = (cosec θ - cot θ), what is the product of a and b?
    Solution

    a = (cosec θ + cot θ) and b = (cosec θ - cot θ)

    a × b = (cosec θ + cot θ) (cosec θ - cot θ)

    =cosec2θ+cotθ cosecθ- cotθ cosecθ-cot2θ

    =cosec2θ-cot2θ

    =1sin2θ-1tan2θ

    =1sin2θ-1sin2θcos2θ

    =1sin2θ-cos2θsin2θ

    =1-cos2θsin2θ

    =sin2θcos2θ=1

    Therefore, option B is correct.

  • Question 3
    1 / -0
    In a right triangle ABC, right angled at B, sin A = 12. What is the value of tan A?
    Solution

    sin A=12

    squaring it we get,

    sin2A=1222=12

    sin2A=Perpendicular2Hypotenuse2=12

    Hypotenuse2=Base2+Perpendicular2

    Base2=Hypotenuse2-Perpendicular2

    = 2 - 1 = 12=1 

    tan A= PerpendicularBase=11

    = 1

    Therefore, option A is correct.

  • Question 4
    1 / -0

    If cos(90° - θ). sec θ. tan(90° -θ). cosec θ = x, what is the value of x?

    Solution

    cos(90° - θ). sec θ. tan(90° - θ). cosec θ = x 

    By applying properties of trigonometry we get,

    sinθ·1cosθ·cotθ·1sinθ=x

    cotθcosθ=1tanθcosθ

    1sinθcosθcosθ=cosθsinθcosθ

    cosθcosθ×sinθ=1sinθ

    =cosec θ

    Therefore, option C is correct.

  • Question 5
    1 / -0
    In a right triangle PQR, right-angled at Q, sin P = . What is the value of cos2 P?
    Solution

    sin P = PerpendicularHypotenuse=610

    squaring it we get,

    sin2P=Perpendicular2Hypotenuse2=62102=36100

    Hypotenuse2=Base2+Perpendicular2

    Base2=Hypotenuse2-Perpendicular2

    Base2=102-62=64

    cos2P=Base2Hypotenuse2=64100

    =1625

    Therefore, option B is correct.

  • Question 6
    1 / -0
    What is the value of cot2 A tan2 A?
    Solution

    cot2A=Base2Perpendicular2

    tan2A=Perpendicular2Base2

    cot2A×tan2A=Base2Perpendicular2×Perpendicular2Base2

    = 1

    Therefore, option B is correct.

  • Question 7
    1 / -0
    Simplify: cos 55°. cosec 35° - 1
    Solution

    cos 55°. cosec 35° - 1

    cos 90ο-35ο · cosec 35° - 1

    sin 35ο·1sin 35ο-1

    1 - 1 = 0

    Therefore, option D is correct.

  • Question 8
    1 / -0
    If cos (A + B) = cos A cos B - sin A sin B, what is the value of cos 120°?
    Solution

    cos (A + B) = cos A cos B - sin A sin B

    cos 120°=cos (90°+30°)

    cos (90° + 30°) = cos 90° cos 30° - sin 90° sin 30°

    Putting values we get,

    =0×32-1×12=0-12

    =-12

    Therefore, option B is correct.

  • Question 9
    1 / -0
    What is the value of cos 0° . sin 25° . sec 85° . tan 45° . cosec 5° . cos 65° . sin 90°?
    Solution

    cos 0° .  sin 25° .  sec 85° .  tan 45° .  cosec 5° .  cos 65° .  sin 90°

    = cos 0° . sin 25° . sec 85° .  tan 45° .cosec90ο-85ο·cos90ο-25ο·sin90ο-90ο

    = cos 0° .  sin 25° .  sec 85° .  tan 45° ·sec 85ο·sin 25ο·cos 0ο

    =1·sin25ο·sin25ο·sec 85ο·sec 85ο·1·1

    =sin225ο·sec2 85ο

    Therefore, option B is correct.

  • Question 10
    1 / -0
    What is the value of = ?
    Solution

    sec2θ-tan2θ1+cot2θ-sin2θ

    1cos2θ-sin2θcos2θ1+1tan2θ-sin2θ

    1-sin2θcos2θ1+cos2θsin2θ-sin2θ

    cos2θcos2θsin2θ+cos2θsin2θ-sin2θ

    11sin2θ-sin2θ

    sin2θ-sin2θ

    =0

    Therefore, option A is correct.

  • Question 11
    1 / -0

    If tanθ= (x sinϕ) / (1−xcosϕ) and, tan ϕ = (y sin θ)/ (1−y cos θ) then x/y =?

    Solution

    We have, tanθ = (x sinϕ)/ (1−xcosϕ)

    ⇒ (1−xcos ϕ) / (x sin ϕ) = 1/ tanθ 

    ⇒ (1/ xsin ϕ) −cotϕ=cotθ

    ⇒ 1/ xsin ϕ= =cot θ+cot ϕ and 

    tan ϕ = y sinθ / (1−y cosθ) 

    ⇒ (1−y cosθ)/ y sinθ = 1/ tan ϕ

    ⇒ (1/y sin θ) – cot θ = cotϕ

    ⇒ (1/ y sin θ) =cot ϕ+cot θ

    ⇒ (1/y sin θ) = (1/ x sin ϕ) 

    ⇒ x/y = sin θ/ sin ϕ

    Therefore, option C is correct.

  • Question 12
    1 / -0
    In a right triangle PQR, right-angled at Q, sin P = and cos P = . What is the value of sec P . cosec P?
    Solution

    sin P =635 , cos P = 335

    squaring both of them we get,

    sin2P = 3645, cos2P = 945

    sin2P=Perpendicular2Hypotenuse2=3645

    cos2P=Base2Hypotenuse2=945

    ∴ Hypotenuse2=45

    Base2=9

    Perpendicular2=36

    sec2P=Hypotenuse2Base2=459

    cosec2P=Hypotenuse2Perpendicular2=4536

    sec2P·cosec2P=459·4536=254

    sec P·cosec P=254=52 

    Therefore, option B is correct.

  • Question 13
    1 / -0
    What is the value of sin 60°. sin 30° + cos 60°. cos 30° - ?
    Solution

    sin 60ο·sin 30ο+cos 60ο·cos 30ο-32

    Putting the values we get:

    32·12+12·32-32

    34+34-32

    3+3-234= 23-234

    04=0

    Therefore, option D is correct.

  • Question 14
    1 / -0

    For what value of θ is sin θ=1sec θ?

    Solution

    sinθ=1secθ

    secθ=1cosθ

    ∴ sinθ=11cosθ

    sinθ=cosθ

    and as we know that the value of sinθ and cosθ is equal at 45ο.

    i.e., 12

    So, sinθ=1secθ=45ο

    Therefore, option C is correct.

  • Question 15
    1 / -0
    What is the value of cosecθ. cotθ?
    Solution

    cosec θ=1sinθ

    cot θ=1tanθ

    tan θ=sinθcosθ

    cosec θ · cot θ=1sinθ·1tanθ

    1sinθ·1sinθcosθ

    1sinθ·cosθsinθ

    cosθsin2θ

    Therefore, option C is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now