Self Studies

Introduction to Trigonometry Test - 17

Result Self Studies

Introduction to Trigonometry Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What will be the value of (sin30° + cos30°) – (sin 60° + cos60°)?

    Solution

    (sin30° + cos30°) – (sin 60° + cos60°)

    12+32-32-12

    = 0

    Therefore, option A is correct.

  • Question 2
    1 / -0

    If θ is an acute angle and tan θ + cot θ = 2 , then the value of tan25θ+cot25θ is

    Solution

    Given: tanθ+cotθ=2

    tanθ+1tanθ=2

    tan2θ+1=2tanθ

    tan2θ-2tanθ+1=0

    (tanθ-1)2=0

    tanθ-1=0

    tanθ=1

    Now, cotθ=1tanθ=11=1

    tan25θ+cot25θ=(tanθ)25+(cotθ)25=(1)25+(1)25

    1+1=2

    Hence, the correct option is (C).

  • Question 3
    1 / -0

    Given that: SinA = a/b, then cosA = ?

    Solution

    Given,  sin A=ab

    As sin A = Perpendicular Hypotenuse

    Let the complete ratio be x

    Perpendicular = ax

    Hypotenuse = bx

    Now

    Hypotenuse2=Base2+Perpendicular2

    Base2=Hypotenuse2-Perpendicular2

    Base2=bx2-ax2

    Base= xb2-a2

    cos A=BaseHypotenuse=xb2-a2bx=b2-a2b

    Therefore, option C is correct.

  • Question 4
    1 / -0

    The maximum value of 1/secθ is

    Solution

    1sec θ (Given)

    sec θ is in the denominator

    The minimum value of sec θ will return maximum value for 1sec θ

    But the minimum value of sec θ is sec 0°=1

    Hence, the maximum value of 1sec 0°=11=1

    Hence, the correct option is (C).

  • Question 5
    1 / -0

    If sinθ=5/13 then cosθ =

    Solution

    Let AB = 5k and AC = 13k

    If sin 513

    Then the ration of  opposite side  hypotenuse =513

    By Pythagorean Theorem

    If opposite side =5 units and hypotenuse =13 units (for any units)

    Then adjacent side =12 units

    and cos= adjacent side  hypotenuse =1213

    Hence, the correct option is (C).

  • Question 6
    1 / -0

    A boat is sailing towards a lighthouse of height 203 m at a certain speed. The angle of elevation of the top of the lighthouse changes from 30° to 60° in 10 seconds. What is the time taken (in seconds) by the boat to reach the lighthouse from its initial position?

    Solution

    Let AB be lighthouse = 203

    Let C be the initial position of the boat


    In triangle ABC

    tan 30ο=ABBC=203BC

    13=203BC

     BC = 60 m

    In triangle ABD

    tan 60ο=203BD

    BD = 20 m

    CD = 40 m

    Speed of boat = CD10=4010=4m/sec

    Time is taken by boat to reach the lighthouse = 604

    = 15 sec

    Therefore, option C is correct.

  • Question 7
    1 / -0

    The value of the expression [cosec (75° + θ) – sec (15° - θ) – tan (55° + θ) + cot (35° - θ)] is.

    Solution

    cosec (75° + θ) – sec (15° - θ) – tan (55° + θ) + cot (35° - θ)

    = cosec (75° + θ) – cosec [90° - (15° - θ)] – tan (55° + θ) + tan [90° - (35° - θ)]

    = cosec (75° + θ) – cosec (75° + θ) – tan (55° + θ) + tan (55° + θ)

    = 0

    Therefore, option  C is correct.

  • Question 8
    1 / -0

    If cos θ = 45; then the value of cosecθ1+cotθ is:

    Solution

    cos θ = 4/5

    Base=4; Hypotenuse = 5; Perpendicular = 3

    Now, cosecθ = H/P = 5/3; cotθ = B/P = 4/3

    So, cosecθ1+cotθ=531+43

    57

    Therefore, otpion A is correct.

  • Question 9
    1 / -0

    If tanθ = sinα-cosαsinα+cosα ; then (sin α + cos α) is:

    Solution

    Given: tanθ = sinα-cosαsinα+cosα

    By componendo And dividendo:

    ∴ 1+tanθ1-tanθ=2sinα2cosα=sinαcosα

    ⇒ sin α = k (1 + tanθ) and cos α = k(1 – tanθ)

    ∴ sin2α α + cos2 α = 2k2(1 + tan2θ) = 1

    ∴ k = ± cosθ2

    ∴ sin α + cos α = 2k = ±2cosθ

    Therefore, option A is correct.

  • Question 10
    1 / -0

    In triangle PQR , if PR + QR = 25 cm and PQ = 5cm. Then the value of sin P + tan P is


    Solution

    Let QR = x cm, then PR = (25−x) cm


    (25-x)2=x2+52

    625-50x+x2=x2+25

    -50x=-600

    x=12cm

    QR=12cm and PR=25-12=13 cm

    Now, sin P+tan P

    =1213+125=60+15665=21665

    hence, the correct option is (A).

  • Question 11
    1 / -0

    If A, B and C are interior angles of a triangle ABC, then what is the value of tan (B+C/2)?


    Solution

    If A, B and C are interior angles of a triangle then sum of angles is 180°

    A+B+C=π

    B+C=π-A

    tanB+C2=tanπ-A2=tanπ2-A2

    We know that tan(90-θ)=cotθ

    tanπ2-A2=cotA2

    Hence, the correct option is (B).

  • Question 12
    1 / -0

    The minimum value of 2sin2θ + 3cos2θ is:

    Solution

    2 sin2θ +3 cos2θ 

    =2sin2θ+2cos2θ+cos2θ

    =2sin2θ+cos2θ+cos2θ  [ identity sin2θ+cos2θ=1 ]

    = 2 +cos2θ

    Since we know that -1cosθ1 then 0cos2θ1

    ∵ minimum value of cos2θ = 0

    ∴ Required minimum value = 2 + 0 =2

    Therefore, option B is correct.

  • Question 13
    1 / -0

    If tanθ = 111 and 0 < θ < π2 ; then the value of cosec2θ-sec2θcosec2θ+sec2θ is:

    Solution

    tanθ = 111

    Then, cosecθ = 12

    and secθ = 1211

    Now, cosec2θ-sec2θcosec2θ+sec2θ

    12-121112+1211

    120144=56

    Therefore, option B is correct.

  • Question 14
    1 / -0

    If cos(A/2) = x; then the value of x is: 

    Solution

    Given: cos A2=x

    We know: cos A=1-2 sin2 A2

    cos A=1-2(1-cos2A2)

    cos A=1-2+2cos2A2

    cos A=-1+2x2

    =2x2=1+cos A

    x2=1+cos A2

    x=1+cos A2

    Hence, the correct option is (D).

  • Question 15
    1 / -0

    If secθ + tanθ = 2; then the value of secθ is: 

    Solution

    sec θ + tan θ = 2            ………….. (i)

    sec2θ – tan2θ = 1

    ⟹ (sec θ + tanθ)(sec θ - tanθ) = 1

    ⟹ sec θ – tan θ = 12        …………(ii)

    By adding equations (i) and (ii),

    Sec θ + tan θ + sec θ – tan θ = 2 + 1252

    ⇒ 2secθ = 52

    ⇒ secθ = 54

    Therefore, option B is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now