Self Studies

Introduction to Trigonometry Test - 19

Result Self Studies

Introduction to Trigonometry Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The expression $$ \displaystyle \frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$$ can be written as:
    Solution

    $$\cfrac{\tan A}{1-\cot A}+\cfrac{\cot A}{1-\tan A}$$


     $$=\cfrac{\tan A}{\cfrac{\tan A-1}{\tan A}}+\cfrac{\cot A}{1-\tan A}$$


    $$=\cfrac{\tan ^{2}A}{\tan A-1}-\cfrac{\cot A}{\tan A-1}$$


     $$=\cfrac{\tan ^{2}A-\cot A}{\tan A-1}$$


     $$=\cfrac{\tan ^{3}A-1}{\tan ^{2}A-\tan A}$$....................$$\because \left (\tan A=\dfrac {1}{\cot A}\right )$$


     $$=\cfrac{(\tan A-1)(\tan ^{2}A+\tan A+1)}{\tan A(\tan A-1)}$$


     $$=\cfrac{\tan ^{2}A+1+\tan A}{\tan A}$$


    $$=\cfrac{\sec^{2}A+\tan A}{\tan A}$$


     $$=\cfrac{\sec^{2}A}{\tan A}+1$$


     $$=\cfrac{\cfrac{1}{\cos^{2}A}}{\cfrac{\sin A}{\cos A}}+1$$


     $$=\cfrac{\cfrac{1}{\cos A}}{\sin A}+1$$


     $$=\cfrac{1}{\sin A\cdot \cos A}+1$$


     $$=\cfrac{1}{\cos A}.\cfrac{1}{\sin A}+1$$


     $$=\sec A.\text{cosec}A+1$$.

  • Question 2
    1 / -0
    The value of tan $$1^o$$ tan $$2^o$$ tan $$3^o$$.... tan $$89^o$$ is.
    Solution
    We have to find the value of $$tan 1^{0} tan 2^{0} tan 3^{0} .....tan 89^{0}$$
    We know that $$tan 89^{0}=tan(90^{0}-1^{0})=cot 1^{0}$$
    Similarly $$tan 88^{0}=cot 2^{0}$$ and so on
    Finally we have $$tan46^{0}=cot44^{0}$$
    So we get $$tan1^{0} tan 2^{0}........tan 89^{0}=(tan1^{0}cot1^{0})(tan2^{0}cot2^{0}).........(tan44^{0}cot44^{0})(tan45^{0})$$
    $$=(1)(1).....(1)(1)=1$$
  • Question 3
    1 / -0
    If $$\tan \theta= \cot \theta$$, then the value of $$\sec \theta$$ is :
    Solution
    $$\tan { \theta  } =\cot { \theta  } $$
    $$\Rightarrow \tan ^{ 2 }{ \theta  } =1$$
    $$\Rightarrow \tan { \theta  } =1$$
    $$\Rightarrow \theta =45°$$
    $$\therefore \sec { 45° } =\sqrt { 2 } $$
    Hence, the answer is $$\sqrt { 2 }.$$
  • Question 4
    1 / -0
    The value of $$\displaystyle\,\frac{2}{tan\,30^{\circ}}$$ is ________
    Solution
    $$\dfrac{2}{\tan30^{\circ}} = \tfrac{2}{\frac{1}{\sqrt{3}}} = 2 \sqrt{3} = 3.46$$
  • Question 5
    1 / -0
    If $$\theta =45^{\circ},$$ then the value of $$cosec^{2}\theta$$ is
    Solution
    $$\theta =45°$$
    $$\Rightarrow cosec^{ 2 }45°={ \left( \sqrt { 2 }  \right)  }^{ 2 }=2$$
    Hence, the answer is $$2.$$
  • Question 6
    1 / -0
    The value of $$\displaystyle \tan { { 45 }^{ o } } \times \cot{ { 45 }^{ o } }$$ is :
    Solution
    $$\displaystyle \tan { { 45 }^{ o } } \times \cot{ { 45 }^{ o } }=1\times 1=1$$
  • Question 7
    1 / -0
    $$\displaystyle \sin { { 90 }^{ o } } $$ is :
    Solution
    $$\sin { 90° } =1$$
    Hence, the answer is $$1.$$
  • Question 8
    1 / -0
    The value of $$\displaystyle \tan 45^{\circ} + \tan 60^{\circ}.$$
    Solution
    Taking 
    $$tan 45^0+tan 60^0$$
    substituting value of $$\tan { \mathring { 45 }  }= 1 ,  \tan { \mathring { 60 }  }=\sqrt{3} $$ we get 
    $$=1+\sqrt { 3 } $$
  • Question 9
    1 / -0
    If $$\displaystyle \theta =45$$ then $$\displaystyle \frac { 2\tan { \theta  }  }{ 1+{ \tan }^{ 2 }\theta  } $$ is :
    Solution
    $$\dfrac{2 \tan \theta}{1+\tan \theta}$$

    $$=\displaystyle \frac { 2\tan { { 45 }^{ o } }  }{ 1+{ \tan }^{ 2 }{ 45 }^{ o } } $$

    $$=\dfrac { 2\times 1 }{ 1+1 } =\dfrac { 2 }{ 2 } = 1$$

    Hence, option A is correct.
  • Question 10
    1 / -0
    Find $$\tan\theta,$$ if $$\theta=45^o.$$
    Solution
    Given: $$\theta = 45^o$$
    Therefore, $$ \tan \theta=\tan 45^o=1$$
    Thus option A is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now