Self Studies

Introduction to Trigonometry Test - 20

Result Self Studies

Introduction to Trigonometry Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The given expression is $$\displaystyle \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  } +\cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  } +4 $$ equal to :
    Solution
    Taking the given expression 
    $$\sin{\theta}\cos{(90-{\theta})} +\cos{\theta} sin{(90-{\theta})}$$
    We know that $$\cos{(90-{\theta})}= sin {\theta} , sin{(90-{\theta})}=cos{\theta}$$
    We get
    $$\sin { \theta  } \sin { \theta  } +\cos { \theta  } \cos { \theta  } +4$$
     $$\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +4  $$  we know $$   $$($$\sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }=1)$$
     $$=1+4$$
    $$=5$$
  • Question 2
    1 / -0
    If $$\displaystyle \theta ={ 30 }^{ o }$$ then $$\displaystyle \cos { 2\theta  } $$ is :
    Solution
    Given : $$\theta=30^{o}$$
    $$\cos 2\theta$$
    $$=\cos{2} \left({30}^{o}\right) =\cos {{60}^{o}=\dfrac {1}{2}}$$
  • Question 3
    1 / -0
    Evaluate: $$\displaystyle \sqrt { \frac { 1+{ \cos60 }^{ o } }{ 2 }  } =$$
    Solution
    Given that; $$\sqrt { \dfrac { 1+\cos {  { 60^{o} }  }  }{ 2 }  } $$

     $$=\sqrt { \dfrac { 1+\dfrac { 1 }{ 2 }  }{ 2 }  } $$

     $$=\sqrt { \dfrac { \dfrac { 3 }{ 2 }  }{ 2 }  } $$

    $$=\sqrt { \dfrac { 3 }{ 4 }  } =\dfrac { \sqrt { 3 }  }{ 2 } $$
  • Question 4
    1 / -0
    Express $$\displaystyle \cos { { 79 }^{ o } } +\sec { { 79 }^{ o } } $$ in terms of angles between $$\displaystyle { 0 }^{ o }$$ and $$\displaystyle { 45 }^{ o }$$
    Solution
    Given, 
    $$\displaystyle \cos { { 79 }^{ o } } +\sec { { 79 }^{ o } }$$
    $$\displaystyle =\cos { \left( { 90 }^{ o }-{ 11 }^{ o } \right)  } +\sec { \left( { 90 }^{ o }-{ 11 }^{ o } \right)  }$$
    $$=\displaystyle \sin{ { 11 }^{ o } }+\text{cosec }{ 11 }^{ o }$$
  • Question 5
    1 / -0
    $$\displaystyle \cos { { 45 }^{ o } } .\cos { { 30 }^{ o } } -\sin { { 45 }^{ o } } .\sin { { 30 }^{ o } } $$ is equal to :
    Solution
    Given that:
    $$\cos { { 45 ^o }  } .\cos {  { 30^o-\sin {  { 45 ^o } .\sin {  { 30 ^o }  }  }  }  } $$
    $$= \dfrac { 1 }{ \sqrt { 2 }  } \times \dfrac { \sqrt { 3 }  }{ 2 } -\dfrac { 1 }{ \sqrt { 2 }  } \times \dfrac { 1 }{ 2 } $$(putting the values)

    $$=\dfrac { \sqrt { 3 }  }{ 2\sqrt { 2 }  } -\dfrac { 1 }{ 2\sqrt { 2 }  } $$

     $$=\dfrac { \sqrt { 3 } -1 }{ 2\sqrt { 2 }  } $$
  • Question 6
    1 / -0
    For an acute angle $$\theta$$ in a right angled triangle, $$\dfrac{1}{\sin{\theta}} =$$
    Solution

    $$\sin \theta=\dfrac{opposite}{hypotenuse}$$ 

    $$\cos \theta = \dfrac{adjacent}{hypotenuse}$$ 

    $$\dfrac{1}{\sin \theta}=\dfrac{1}{\dfrac{opposite}{hypotenuse}}=\dfrac{hypotenuse}{opposite}=\text{cosec}\ \theta$$
    $$\therefore\ \dfrac{1}{\sin \theta}=\text{cosec}\ \theta$$

  • Question 7
    1 / -0
    What is the value of $$\displaystyle \sin { { 30 }^{ o } } \times co\sec{ 30 }^{ o }$$?
    Solution
    $$\displaystyle \sin { { 30 }^{ o }\times co\sec{ 30 }^{ o } } =\cfrac { 1 }{ 2 } \times \cfrac { 2 }{ 1 } =\cfrac { 1 }{ 1 } =1$$
  • Question 8
    1 / -0
    $$\dfrac{1}{\cos{\theta}} =$$_____ , for an acute angle $$\theta$$ in a right angled triangle.
    Solution

    $$\sin \theta=\dfrac{opposite}{hypotenuse}$$ 

    $$\cos \theta = \dfrac{adjacent}{hypotenuse}$$ 

    $$\dfrac{1}{\cos \theta}=\dfrac{1}{\dfrac{adjacent}{hypotenuse}}=\dfrac{hypotenuse}{adjacent}=\sec \theta$$
    $$\therefore\ \dfrac{1}{\cos \theta}=\sec \theta$$

  • Question 9
    1 / -0
    The value of $$\tan{\theta}\cdot\tan{(90-\theta)}$$ is equal to
    Solution
    $$ \tan\theta \cdot \tan(90-\theta) = \tan\theta \times \cot\theta = 1 $$ 
    $$\because  \tan(90-\theta) =\cot \theta $$
  • Question 10
    1 / -0
    $$\dfrac{1}{\sec{\theta}} =$$ _____ for an acute angle $$\theta$$ in a right angled triangle.
    Solution

    $$\sin \theta=\dfrac{opposite}{hypotenuse}$$ 

    $$\cos \theta = \dfrac{adjacent}{hypotenuse}$$ 

    $$\text{sec}\ \theta = \dfrac{hypotenuse}{adjacent}$$
    $$\dfrac{1}{\text{sec}\ \theta}=\dfrac{1}{\dfrac{hypotenuse}{adjacent}}=\dfrac{adjacent}{hypotenuse}=\cos\ \theta$$
    $$\therefore\ \dfrac{1}{\text{sec}\ \theta}=\cos\ \theta$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now