Self Studies

Introduction to Trigonometry Test - 27

Result Self Studies

Introduction to Trigonometry Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \tan\theta=p-\frac{1}{4p}$$, then $$ \sec\theta-\tan\theta=$$
    Solution
    Given that:
    $$\tan \theta  = p - \displaystyle \frac{1}{4p}$$
    Let, $$\sec \theta  - \tan \theta  = x\dots (1)$$
    $$\sec \theta +\tan \theta =\dfrac{1}{\sec \theta-\tan \theta}$$
    then, $$\sec \theta  + \tan \theta  = \displaystyle\frac{1}{x}\dots (2)$$
    Subtracting $$(1)$$ from $$(2)$$, we get:
    $$\displaystyle 2\tan \theta  = \frac{1}{x} - x = 2p - \frac{1}{2p}$$

    We solve to get $$x=\displaystyle \ -2p$$ or $$\dfrac{1}{2p}$$
    $$\implies \sec \theta -\tan \theta =-2p$$ or $$\dfrac{1}{2p}$$
  • Question 2
    1 / -0
    If $$a=x\cos^{2}A+y\sin^{2}A$$, then $$(x-a)(y-a)+(x-y)^{2}\sin^{2}A\cos^{2}A$$ is equal to:
    Solution

    Given, $$a=x\cos ^{ 2 }{ A } +y\sin ^{ 2 }{ A } $$

    $$\Rightarrow  a=x\cos ^{ 2 }{ A } +y(1-\cos ^{ 2 }{ A } )\\ \Rightarrow a-y=(x-y)\cos ^{ 2 }{ A } \\ \Rightarrow \cos ^{ 2 }{ A } =\dfrac { a-y }{ x-y } $$     ......(i)

    We know that  $$ \cos ^{ 2 }{ A } +\sin ^{ 2 }{ A } =1$$

    $$\Rightarrow  \sin ^{ 2 }{ A } =1-\cos ^{ 2 }{ A } \\ \Rightarrow \sin ^{ 2 }{ A } =1-\dfrac { a-y }{ x-y } \\ \Rightarrow \sin ^{ 2 }{ A } =\dfrac { x-a }{ x-y } $$     ......(ii)

    Given equation is $$(x-a)(y-a)+{ (x-y) }^{ 2 }\sin ^{ 2 }{ A } \cos ^{ 2 }{ A } $$

    Substituting (i) and (ii) in the given equation, we get

    $$(x-a)(y-a)+{ (x-y) }^{ 2 }\left( \dfrac { x-a }{ x-y }  \right) \left( \dfrac { a-y }{ x-y }  \right) \\ =(x-a)(y-a)+(x-a)(a-y)\\ =(x-a)(y-a)-(x-a)(y-a)\\ =0$$

    Hence, option A is correct.

  • Question 3
    1 / -0
    $$\tan A=a\tan B, \displaystyle \sin A=b\sin B\Rightarrow\frac{b^{2}-1}{a^2-1}$$ is equal to
    Solution
    $$\tan A=a\tan B$$ and $$\sin A=b\sin B$$
    $$\dfrac{\sin A}{\cos A}=a\dfrac{\sin B}{\cos B}$$ 

    $$\dfrac{b\sin B}{\cos A}=\dfrac{a\sin B}{\cos B}$$...... Given, $$b \sin B= \sin A$$

    $$\dfrac{b}{\cos A}=\dfrac{a}{\cos B} \Rightarrow \cos B=\dfrac{a}{b}\cos A$$

    $$\sin ^2A=b^2\sin ^2B\Rightarrow 1-\cos ^2A=b^2(1-\cos ^2B)$$

                                 $$\Rightarrow 1-\cos ^2A=b^2\left (1-\dfrac{a^2}{b^2}\cos ^2A\right )$$

                                 $$\Rightarrow1-\cos ^2A=b^2-a^2\cos ^2A$$

                                 $$\Rightarrow \cos ^2A(a^2-1)=b^2-1$$

                                 $$\Rightarrow\dfrac{(b^2-1)}{(a^2-1)}=\cos ^2A$$ 
  • Question 4
    1 / -0
    If $$\tan \theta +\cot \theta =3$$, then $$\tan^{4}\theta+\cot^{4}\theta=$$
    Solution
    Given $$\tan \theta +\cot \theta =3$$

    $$\Rightarrow (\tan \theta +\cot \theta )^{2} = \tan ^{2}\theta +\cot^{2}\theta +2=9$$

    $$\Rightarrow \tan ^{2}\theta +\cot ^{2}\theta =7$$

    $$\Rightarrow \tan ^{4}\theta +\cot ^{4} \theta +2=49$$

    $$\Rightarrow \tan ^{4}\theta +\cot ^{4}\theta =47$$
  • Question 5
    1 / -0

    If $$\sqrt{\sin x}+\cos x=0$$, then $$\sin x=$$
    Solution
    $$\sqrt\sin x+\cos x=0$$
    $$ \sqrt{\sin x} = -\cos x$$
    Squaring both sides:
    $$ \sin x = \cos^{2}x$$
              $$ = 1 - \sin^{2}x$$
    $$\sin^2 x+\sin x-1=0$$

    Using quadratic formula to find the roots of a quadratic equation, we get:

    $$\sin x=\dfrac {-1\pm\sqrt{1+4}}{2}$$

    $$ \sin x = \dfrac{\sqrt{5} - 1}{2}$$  (The other value is unacceptable as it is less than -1.)
  • Question 6
    1 / -0
    If $$x=\tan\theta+\cot\theta, y=\cos\theta-\sin\theta$$, then which of the following is true?
    Solution

    Given, $$x=\tan { \theta  } +\cot { \theta  } $$

    $$\Rightarrow  x=\dfrac { \sin { \theta  }  }{ \cos { \theta  }  } +\dfrac { \cos { \theta  }  }{ \sin { \theta  }  } $$

    $$\Rightarrow  x=\dfrac { \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  }{ \sin { \theta \cos { \theta  }  }  } $$

    $$ \Rightarrow x=\dfrac { 1 }{ \sin { \theta \cos { \theta  }  }  } $$

    $$ \Rightarrow \sin { \theta \cos { \theta  }  } =\dfrac { 1 }{ x }$$   ......(i)

    Also given, $$y=\cos { \theta  } -\sin { \theta  } $$

    On squaring both sides, we have

    $$y^2=(\cos { \theta  } -\sin { \theta  })^2 \\ \Rightarrow { y }^{ 2 }=\cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  } -2\sin { \theta \cos { \theta  }  } \\ \Rightarrow { y }^{ 2 }=1-2\sin { \theta \cos { \theta  }  } $$

    On substituting value of (i), we get

    $${ y }^{ 2 }=1-\dfrac { 2 }{ x } \\ \Rightarrow \dfrac { 2 }{ x } =1-{ y }^{ 2 }\\ \Rightarrow \dfrac { 1 }{ x } =\dfrac { 1-{ y }^{ 2 } }{ 2 } $$

    So, option B is correct.

  • Question 7
    1 / -0
    $$\cos A=a\cos B,\sin A=b\sin B\Rightarrow (b^{2}-a^{2})\sin^{2}B=$$
    Solution
    From question $$a=\dfrac{\cos A}{\cos B}$$ and $$b=\dfrac{\sin A}{\sin B}$$

    $$\left( { b }^{ 2 }-{ a }^{ 2 } \right) { \sin  }^{ 2 }B=\left( \cfrac { { \sin  }^{ 2 }A }{ { \sin  }^{ 2 }B } -\cfrac { { \cos  }^{ 2 }A }{ { \cos  }^{ 2 }B }  \right) { \sin  }^{ 2 }B$$

    $$=\left( \cfrac { { \sin  }^{ 2 }A{ \cos  }^{ 2 }B{ -\cos  }^{ 2 }A{ \sin  }^{ 2 }B }{ { { \cos  }^{ 2 }B\sin  }^{ 2 }B }  \right) { \sin  }^{ 2 }B$$ 

    $$=\left( \cfrac { \left( 1-{ \cos  }^{ 2 }A \right) { \cos  }^{ 2 }B{ -\cos  }^{ 2 }A\left( 1-{ \cos  }^{ 2 }B \right)  }{ { { \cos  }^{ 2 }B } }  \right)$$

     $$ =\cfrac { { \cos  }^{ 2 }B-{ \cos  }^{ 2 }A }{ { \cos  }^{ 2 }B } =1-\cfrac { { \cos  }^{ 2 }A }{ { \cos  }^{ 2 }B } =1-{ a }^{ 2 }$$
  • Question 8
    1 / -0
    If $$\displaystyle \cot\theta=3x-\frac{1}{12{x}}$$, then $$\csc \theta-\cot \theta$$ is equal to
    Solution
    Given: $$\cot \theta=3x-\dfrac {1}{12x}$$

    We know $$\csc^{2}\theta - \cot^{2}\theta=1$$

    $$\Rightarrow \csc^2 \theta= 1+\cot^2 \theta$$

    $$\Rightarrow \csc^2 \theta=1+\bigg( 3x-\dfrac{1}{12x} \bigg)^2$$

    $$\Rightarrow \csc^2 \theta=1+9x^2+\dfrac{1}{144x^2}-\dfrac {1}{2}$$

    $$\Rightarrow \csc^2 \theta=9x^2+\dfrac{1}{144x^2}+\dfrac {1}{2}$$

    $$\Rightarrow \csc^2 \theta=\bigg( 3x+\dfrac{1}{12x} \bigg)^2$$

    $$\Rightarrow \csc \theta=\pm \bigg( 3x+\dfrac{1}{12x} \bigg)$$

    If $$\csc \theta=3x+\dfrac{1}{12x}$$

    Then $$\csc \theta - \cot \theta=3x+\dfrac{1}{12x}-\bigg(3x-\dfrac{1}{12x}\bigg)$$

                                     $$=\dfrac{1}{6x}$$

    If $$\csc \theta=-\bigg(3x+\dfrac{1}{12x}\bigg)=-3x-\dfrac{1}{12x}$$

    Then $$\csc \theta - \cot \theta=-3x-\dfrac{1}{12x}-\bigg(3x-\dfrac{1}{12x}\bigg)$$

                                     $$=-6x$$

    Hence $$\csc \theta-\cot \theta=-6x$$     or    $$\dfrac{1}{6x}$$
  • Question 9
    1 / -0
    Eiminate $$\theta$$ from $$ x= 1+\tan\theta,y= 2+\cot\theta$$
    Solution
    We know, 
    $$ \tan \theta \times \cot \theta = 1 $$
    Substituting the corresponding values,
    $$(x - 1)(y - 2) = 1$$
    $$xy - 2x - y + 2 = 1$$
    Or, $$xy + 1 = 2x + y$$
    Hence, option 'C' is correct.
  • Question 10
    1 / -0
    If $$\cos\theta+\sin\theta=\sqrt{2}\cos\theta$$, then $$\cos\theta-\sin\theta=$$ _____
    Solution
    Given,
    $$\cos \theta + \sin  \theta = \sqrt{2} \cos  \theta$$
    $$\sin  \theta =   \sqrt{2} \cos  \theta-  \cos  \theta $$
              $$= (\sqrt{2}-1) \cos  \theta $$
    $$\cos \theta = \dfrac{1}{(\sqrt{2}-1) } \sin  \theta = (\sqrt{2}+1)\sin \theta$$ 

    $$\cos \theta - \sin \theta = (\sqrt{2}+1)\sin \theta- \sin \theta $$
                           $$ = \sqrt{2}\sin \theta $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now