Self Studies

Introduction to Trigonometry Test - 29

Result Self Studies

Introduction to Trigonometry Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the expression $$\text{cosec }(75^0+\theta) - \sec (15^0 - \theta) - \tan (55^0 + \theta) + \cot (35^0 - \theta)$$, is
    Solution
    Given: $$E = \text{cosec }(75^0 + \theta) - \sec (15^0 - \theta) - \tan (55^0 + \theta) + \cot (35^0 - \theta)$$
    As, we know that,
    $$\text{cosec }\theta = \sec(90^0-\theta)$$ and
    $$\tan\theta = \cot(90^0-\theta)$$
    Using these, we get
    $$E=\sec(90^0-75^0-\theta)-\sec(15^0-\theta)-\cot(90^0-55^0-\theta)+\cot(35^0-\theta)$$
    $$\Rightarrow E=\sec(15^0-\theta)-\sec(15^0-\theta)-\cot(35^0-\theta)+\cot(35^0-\theta) = 0$$
    Hence, option B is correct.
  • Question 2
    1 / -0
    If $$x=a\cos^{3}\theta\sin^{2}\theta,  y=a\sin^{3}\theta\cos^{2}\theta$$ and $$\displaystyle \frac{(x^{2}+y^{2})^{p}}{(xy)^{q}}, (p,q\in N)$$ is independent of $$\theta$$ then:
    Solution
    $$ x = a{\cos }^{3} \theta {\sin }^{2} \theta $$

    $$ y = a{\sin }^{3} \theta {\cos }^{2} \theta $$

    Then, $$ {({x}^{2} + {y}^{2})}^{p}  =  {({a}^{2}{\cos }^{6} \theta {\sin }^{4} \theta + {a}^{2}{\sin }^{6} \theta {\cos }^{4} \theta)}^{p} $$
                                  $$= {[{a}^{2}\sin ^4\theta \cos ^4\theta({\cos }^{2} \theta  + {\sin }^{2} \theta )]}^{p}$$
                                  $$=(a^2\sin ^4\theta \cos ^4\theta)^p$$

    and, $$ {(xy)}^{q} = {({a}^{2}{\cos }^{5} \theta {\sin }^{5} \theta)}^{q} $$

    Now, 
    $$\displaystyle  \frac{{({x}^{2} + {y}^{2})}^{p}}{{(xy)}^{q}} $$ 
    $$=\displaystyle \frac{{({a}^{2}{\sin }^{4} \theta {\cos }^{4} \theta)}^{p}}{(a^2\cos ^5\theta \sin ^5\theta)^q} $$
    $$=a^{2p-2q}\times (\sin\theta\cos\theta)^{4p-5q}$$

    Now, $$\displaystyle  \frac{{({x}^{2} + {y}^{2})}^{p}}{{(xy)}^{q}} $$ is independent of $$ \theta $$ if,
    $$4p-5q=0$$
    $$\therefore 4p=5q$$

    Hence, option 'B' is correct.
  • Question 3
    1 / -0
    $$\sin \left ( 45^{0}+\theta  \right )-\cos\left ( 45^{0}-\theta  \right )$$ is equal to
    Solution
    $$\sin (45^0+\theta)-\cos (45^0-\theta)$$

    $$=sin(45^0+\theta)-sin(90^0-(45^0-\theta))$$

    $$=sin (45^0+\theta)-sin( 45^0+\theta)$$

    $$=0$$
  • Question 4
    1 / -0
    If $$\mathrm{x}= \mathrm{a}\cos^2 \theta \sin\theta$$ and $$\mathrm{y}=\mathrm{a}\sin^{2}\theta\cos\theta$$, then $$\displaystyle \frac{(\mathrm{x}^{2}+\mathrm{y}^{2})^{3}}{\mathrm{x}^{2}\mathrm{y}^{2}}=$$
    Solution
    Given : $$x=a\cos^{2} \theta \sin \theta$$ and $$y=a\sin^{2} \theta \cos \theta$$

    $$\displaystyle \frac { ({ x }^{ 2 }+{ y }^{ 2 })^{ 3 } }{ { x }^{ 2 }{ y }^{ 2 } } =\frac { ({ { a }^{ 2 } }\cos ^{ 4 } \theta \sin ^{ 2 }{ \theta  } +{ { a }^{ 2 } }\cos ^{ 2 } \theta \sin ^{ 4 }{ \theta  } )^{ 3 } }{ { { a }^{ 4 } }\cos ^{ 6 } \theta \sin ^{ 6 }{ \theta  }  }$$
                          
                          $$ =\dfrac { {a}^{6}\cos^{6} \theta \sin^{6}{\theta} \left(\cos^{2} \theta +\sin^{2}{\theta} \right)^{3}}{a^{4} \cos^{6} \theta \sin^{6}{\theta}}$$        ($$\because sin^2 \theta +cos^2 \theta =1)$$
                          
                           $$=a^{2}(1)^{3}=a^{2}$$
    Hence, option C is correct.
  • Question 5
    1 / -0
    $$\tan^2\alpha=1-p^2$$ then, $$\sec\alpha + \tan^3\alpha \,\text{cosec}\,\alpha=$$
    Solution
    $$\displaystyle \sec \alpha + \tan ^{3}\alpha\, \text{cosec}\, \alpha = \frac{1}{\cos \alpha} + \frac{\sin ^{2}\alpha}{\cos ^{3}\alpha} =\frac{\cos^2 \alpha + \sin^2 \alpha}{\cos^3 \alpha} = \frac{1}{\cos^3 \alpha}= \sec ^{3}\alpha$$

    $$=(1+\tan ^{2}\alpha)^{\tfrac{3}{2}} = (2-p^{2})^{\tfrac{3}{2}}$$
  • Question 6
    1 / -0
    The value of $$sin^{2}30^{\circ}$$ - $$cos^{2}30^{\circ}$$ is:
    Solution
    $$\sin ^{ 2 }{ 30° } -\cos ^{ 2 }{ 30° } $$
    $$= { \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }-{ \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }$$
    $$=\dfrac { 1 }{ 4 } -\dfrac { 3 }{ 4 } $$
    $$=-\dfrac { 2 }{ 4 } $$
    $$=-\dfrac { 1 }{ 2 } $$
    Hence, the answer is $$-\dfrac { 1 }{ 2 }.$$
  • Question 7
    1 / -0
    If sin $$A=\dfrac{1}{2}$$ and cos $$B=\dfrac{1}{2}$$, then the value of $$(A+B)$$ is equal to :
    Solution
    $$\sin { A } =\dfrac { 1 }{ 2 } ,\cos { B } =\dfrac { 1 }{ 2 } $$
    $$\Rightarrow \sin { A } =\sin { 30° } ,\cos { B } =\cos { 60° } $$
    $$\Rightarrow A=30°,B=60°$$
    $$\therefore A+B=30°+60°=90°$$
    Hence, the answer is $$90°.$$

  • Question 8
    1 / -0
    If cot $$\theta =\dfrac{7}{8}$$, then the value of $$tan^{2}\theta$$ equals to :
    Solution
    $$\cot { \theta  } =\dfrac { 7 }{ 8 } $$

    $$\Rightarrow \tan { \theta  } =\dfrac { 1 }{ \cot { \theta  }  } \\\ \ \ \ \ \ \ \ \ \ \ \ =\dfrac { 8 }{ 7 } $$

    $$\Rightarrow \tan ^{ 2 }{ \theta  } =\dfrac { 64 }{ 49 } $$
    Hence, the correct option is (C)
  • Question 9
    1 / -0
    The value of (sin $$45^{\circ}+cos 45^{\circ}$$) is :
    Solution
    $$\sin { 45° } +\cos { 45° } $$
    $$=\dfrac { 1 }{ \sqrt { 2 }  } +\dfrac { 1 }{ \sqrt { 2 }  } $$
    $$=\dfrac { 2 }{ \sqrt { 2 }  } $$
    $$=\sqrt { 2 } $$
    Hence, the answer is $$=\sqrt { 2 } .$$
  • Question 10
    1 / -0
    In the figure given below, $$\Delta ABC$$ is right angled at B and tan$$A=\dfrac{4}{3}.$$ If $$AC=15$$ cm, then the length of BC is :

    Solution
    $$\tan A=\dfrac43$$
    $$\Rightarrow AB=\dfrac34BC$$

    Now, in $$\triangle ABC$$

    $$AB^2+BC^2=AC^2$$

    $$\Bigg(\dfrac34BC\Bigg)^2+BC^2=15^2$$

    $$\Rightarrow \dfrac{25}{16}BC^2=15^2$$

    $$\Rightarrow BC^2=\dfrac{15^2\times 4^2}{5^2}$$

    $$\Rightarrow BC=12$$

    Therefore, Answer is $$12\ cm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now