Self Studies

Introduction to Trigonometry Test - 32

Result Self Studies

Introduction to Trigonometry Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\sin A, \cos A$$ and $$\tan A$$ are in $$G.P.,$$ then $$\cot^6 A- \cot^2A$$ is equal to
    Solution
    Given,
    $$\sin A, \cos A$$ and $$\tan A$$ are in $$G.P.,$$

    $$\therefore \cos^2A=\sin A \tan A$$

    $$\Rightarrow \cos^2A=\sin A\times \dfrac{\sin A}{\cos A}$$

    $$\Rightarrow \cos^3 A=\sin^2 A$$

    $$\Rightarrow \cos^2A . \cos A = \sin^2 A$$

    $$\Rightarrow \cfrac {\cos^2A}{\sin^2A} = \cfrac {1}{\cos A}$$

    $$\Rightarrow \cot^2 A= \sec A$$

    Squaring on both sides, we get

    $$\Rightarrow (\cot^2 A)^2= (\sec A)^2$$

    $$\Rightarrow \cot^4 A= \sec^2 A$$

    $$\Rightarrow \cot^4A=1+\tan^2A$$

    $$\Rightarrow \cot^4A-1 = \tan^2A......(1)$$


    Now, 
    $$\cot^6A - \cot^2A$$

    $$ = \cot^2A(\cot^4A-1)$$

    $$=\cot^2A \times \tan^2A$$

    $$=\dfrac{1}{\tan^2A} \times \tan^2A$$

    $$=1$$

    Hence, the required value is $$1.$$ 
  • Question 2
    1 / -0
    If $$\displaystyle x=r\sin \theta \cdot \cos \phi,$$  $$y=r\sin \theta \cdot \sin \phi$$ and $$\displaystyle z= r\cos \theta$$, then the value of $$\displaystyle x^{2}+y^{2}+z^{2}$$ is independent of: 
    Solution
    Given, $$\displaystyle x=r\sin \theta \cdot \cos \phi,$$  $$y=r\sin \theta \cdot \sin \phi$$ and $$\displaystyle z= r\cos \theta$$

    Therefore, $${ x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 }$$
    $$ ={ \left( r\sin\theta \cos\phi  \right)  }^{ 2 }+{ \left( r\sin\theta \sin\phi  \right)  }^{ 2 }+{ \left( r\cos\theta  \right)  }^{ 2 }$$

    $$={ r }^{ 2 }{ \sin }^{ 2 }\theta { \cos }^{ 2 }\phi +{ r }^{ 2 }{ \sin }^{ 2 }\theta { \sin }^{ 2 }\phi +{ r }^{ 2 }{ \cos }^{ 2 }\theta $$

    $$ ={ r }^{ 2 }{ \sin }^{ 2 }\theta \left( { \cos }^{ 2 }\phi +{ \sin }^{ 2 }\phi  \right) +{ r }^{ 2 }{ \cos }^{ 2 }\theta $$
    $$ ={ r }^{ 2 }{ \sin }^{ 2 }\theta +{ r }^{ 2 }{ \cos }^{ 2 }\theta $$

    $$ ={ r }^{ 2 }\left( { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta  \right) $$

    $$={ r }^{ 2 }$$
  • Question 3
    1 / -0
    If $$\sin { A } =a\cos { B } $$ and $$\cos { A } =b\sin { B } $$, then $$\left( { a }^{ 2 }-1 \right) \tan ^{ 2 }{ A } +\left( 1-{ b }^{ 2 } \right) \tan ^{ 2 }{ B } $$   is equal to
    Solution
    Given, $$\sin { A } =a\cos { B } $$ and $$\cos { A } =b\sin { B } ,$$ 
    On squaring and adding, we get 
    $${ a }^{ 2 }\cos ^{ 2 }{ B } +{ b }^{ 2 }\sin ^{ 2 }{ B } =1$$
    $$\Rightarrow \displaystyle \cos ^{ 2 }{ B } =\frac { 1-{ b }^{ 2 } }{ { a }^{ 2 }-{ b }^{ 2 } } $$ and $$\displaystyle \sin ^{ 2 }{ B } =\frac { { a }^{ 2 }-1 }{ { a }^{ 2 }-{ b }^{ 2 } } ,$$
    $$\Rightarrow \displaystyle \tan ^{ 2 }{ B } =\frac { { a }^{ 2 }-1 }{ 1-{ b }^{ 2 } } $$
    Also, $$\displaystyle\tan ^{ 2 }{ A } =\frac { { a }^{ 2 } }{ { b }^{ 2 } } \cot ^{ 2 }{ B } =\frac { { a }^{ 2 } }{ { b }^{ 2 } } .\frac { 1-{ b }^{ 2 } }{ { a }^{ 2 }-1 } $$
    Therefore, $$\displaystyle\left( { a }^{ 2 }-1 \right) \tan ^{ 2 }{ A } +\left( 1-{ b }^{ 2 } \right) \tan ^{ 2 }{ B } =\frac { { a }^{ 2 } }{ { b }^{ 2 } } \left( 1-{ b }^{ 2 } \right) +{ a }^{ 2 }-1=\frac { { a }^{ 2 }-{ b }^{ 2 } }{ { b }^{ 2 } } $$
  • Question 4
    1 / -0
    If $$\tan A+\cot A=4$$, then $$\tan^2A+\cot^2A$$ is equal to
    Solution
    Given, $$\tan A+\cot A=4$$
    On squaring, we get
    $$(\tan A+\cot A)^2=4^2 $$
    $$\Rightarrow \tan^2A+\cot^2A+2 \tan A \cot A=16$$
    $$\Rightarrow \tan^2A+\cot^2A+2 (1) = 16$$
    $$\Rightarrow \tan^2A+\cot^2A+2 =16$$
    $$\Rightarrow \tan^2A+\cot^2A =14$$
  • Question 5
    1 / -0
    If $$\displaystyle a\sec \alpha - c\tan \alpha =d$$ and $$\displaystyle b\sec \alpha -d\tan \alpha =c$$  $$\ \ \  then$$
  • Question 6
    1 / -0
    If $$\displaystyle \frac{2\sin \alpha }{1+\sin \alpha +\cos \alpha }=\lambda$$ then $$\displaystyle \frac{1+\sin \alpha -\cos \alpha }{1+\sin \alpha }$$ is equal to
    Solution
    $$\lambda =\cfrac { 2sin\alpha  }{ 1+sin\alpha +cos\alpha  } \\ =\cfrac { 2sin\alpha  }{ \left( 1+sin\alpha  \right) +\left( cos\alpha  \right)  } \times \cfrac { \left( 1+sin\alpha  \right) -\left( cos\alpha  \right)  }{ \left( 1+sin\alpha  \right) -\left( cos\alpha  \right)  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ { \left( 1+sin\alpha  \right)  }^{ 2 }-{ \left( cos\alpha  \right)  }^{ 2 } } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 1+{ sin }^{ 2 }\alpha +2sin\alpha -{ cos }^{ 2 }\alpha  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 1+{ sin }^{ 2 }\alpha +2sin\alpha -1+{ sin }^{ 2 }\alpha  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 2{ sin }^{ 2 }\alpha +2sin\alpha  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 2{ sin }\alpha \left( 1++sin\alpha  \right)  } \\ =\cfrac { \left( 1+sin\alpha -cos\alpha  \right)  }{ \left( 1+sin\alpha  \right)  } $$
  • Question 7
    1 / -0
    If $$\displaystyle  \sin\theta + cosec \theta= 2,$$  then the value of $$\displaystyle \sin ^{8}\theta + cosec ^{8}\theta$$ is equal to
    Solution
    $$sin\theta +cosec\theta =2\\ \Rightarrow sin\theta +\cfrac { 1 }{ sin\theta  } =2$$
    Squaring both sides
    $${ \left( sin\theta +\cfrac { 1 }{ sin\theta  }  \right)  }^{ 2 }={ 2 }^{ 2 }\\ \Rightarrow { sin }^{ 2 }\theta +\cfrac { 1 }{ { sin }^{ 2 }\theta  } +2sin\theta \cfrac { 1 }{ sin\theta  } =4\\ \Rightarrow { sin }^{ 2 }\theta +\cfrac { 1 }{ { sin }^{ 2 }\theta  } =2$$
    Again squaring both sides
    $${ \left( { sin }^{ 2 }\theta +\cfrac { 1 }{ { sin }^{ 2 }\theta  }  \right)  }^{ 2 }={ 2 }^{ 2 }\\ \Rightarrow { sin }^{ 4 }\theta +\cfrac { 1 }{ { sin }^{ 4 }\theta  } =2$$
    Similarly,
    $${ sin }^{ 8 }\theta +\cfrac { 1 }{ { sin }^{ 8 }\theta  } =2$$
    $$\Rightarrow { sin }^{ 8 }\theta +{ cosec }^{ 8 }\theta =2$$
  • Question 8
    1 / -0
    If $$\displaystyle \frac{\sin A}{\sin B}= \frac{\sqrt{3}}{2}$$and $$\displaystyle \frac{\cos A}{\cos B}= \frac{\sqrt{5}}{2},0< A,  B< \dfrac{\pi}{2},$$ then find the value of $$\displaystyle \tan A+\tan B$$
    Solution
    Given  $$\displaystyle \frac{\sin A}{\sin B}= \frac{\sqrt{3}}{2}$$and $$\displaystyle \frac{\cos A}{\cos B}= \frac{\sqrt{5}}{2}$$
    $$\Rightarrow \displaystyle \sin A= \frac{\sqrt{3}}{2}\sin B$$ and $$\displaystyle \cos A= \frac{\sqrt{5}}{2}\cos B$$
    Squaring and adding both equations,
    $$\displaystyle \sin^2A+\cos^2A=\frac{3}{4}\sin^2B+\frac{5}{4}\sin^2B$$
    $$\Rightarrow 3\sin^2B+5\cos^2B=4\Rightarrow \cos^2B =\cfrac{1}{2}\Rightarrow \tan^2B =1\Rightarrow \tan B=1 $$
    Now using first equation, $$\displaystyle \sin A=\frac{\sqrt{3}}{2\sqrt{2}}\Rightarrow \tan A=\frac{\sqrt{3}}{\sqrt{5}}$$
    Hence $$\displaystyle \tan A+\tan B = \frac{\sqrt{3}+\sqrt{5}}{\sqrt{5}}$$
  • Question 9
    1 / -0
    If $$\displaystyle 5\tan\theta = 4 $$ then $$\displaystyle \frac{5\sin \theta -3\cos \theta }{5\sin \theta +2\cos \theta }$$ is equal to


    Solution
    $$\cfrac { 5sin\theta -3cos\theta  }{ 5sin\theta +2cos\theta  } =\cfrac { 5tan\theta -3 }{ 5tan\theta +2 } $$           [dividing num and denominator by $$\cos\theta$$]
    Substituting $$tan\theta =\cfrac { 4 }{ 5 } $$, we get
    $$\cfrac { 5\cfrac { 4 }{ 5 } -3 }{ 5\cfrac { 4 }{ 5 } +2 } =\cfrac { 1 }{ 6 } $$

  • Question 10
    1 / -0
    If $$\displaystyle \sin x=2\cos y,\sqrt 6 \sin y=\tan z$$ and $$\displaystyle 2\sin z=\sqrt 3 \cos x,u,v,w $$ denotes, respectively,$$\displaystyle \sin ^{2}x, \sin ^{2}y, \sin ^{2}z,$$ then the value of $$u+v+w$$  is
    Solution
    $$u+v+w=\sin ^{2}(x)+\sin ^{2}y+\sin ^{2}z$$

    $$=\sin ^{2}(x)+\sin ^{2}y+\dfrac{3}{4}\cos ^{2}x$$

    $$=[\sin ^{2}(x)+\dfrac{3}{4}\cos ^{2}x]+\sin ^{2}y$$

    $$=[\dfrac{\sin ^{2}(x)}{4}+\dfrac{3\sin ^{2}(x)}{4}+\dfrac{3}{4}\cos ^{2}x]+\sin ^{2}(y)$$

    $$=\dfrac{\sin ^{2}(x)}{4}+\dfrac{3}{4}+1-\cos ^{2}y$$

    $$=\dfrac{\sin ^{2}(x)}{4}+\dfrac{3}{4}+1-\dfrac{\sin ^{2}(x)}{4}$$

    $$=\dfrac{7}{4}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now