Given expression is $$\displaystyle \dfrac { \tan ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 } } }{ \tan ^{ 2 }{ { 20 }^{ 0 }. } \sin ^{ 2 }{ { 20 }^{ 0 } } }$$
We know that, $$\tan \theta=\dfrac{\sin \theta}{\cos \theta}$$
Hence, $$\tan^2 \theta=\dfrac{\sin^2 \theta}{\cos^2 \theta}$$
$$\Rightarrow \displaystyle \dfrac { \tan ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 } } }{ \tan ^{ 2 }{ { 20 }^{ 0 }. } \sin ^{ 2 }{ { 20 }^{ 0 } } } =\dfrac { \dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } }{ \cos ^{ 2 }{ { 20 }^{ 0 } } } -\sin ^{ 2 }{ { 20 }^{ 0 } } }{ \dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } }{ \cos ^{ 2 }{ { 20 }^{ 0 } } } \sin ^{ 2 }{ { 20 }^{ 0 } } } $$
$$\displaystyle =\dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 }\cos ^{ 2 }{ { 20 }^{ 0 } } } }{ \sin ^{ 4 }{ { 20 }^{ 0 } } } $$
$$=\dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } \left( 1-\cos ^{ 2 }{ { 20 }^{ 0 } } \right) }{ \sin ^{ 4 }{ { 20 }^{ 0 } } } $$
We also know that, $$\sin^2 \theta+\cos^2\theta =1$$
Hence, $$1-\cos^2\theta =\sin^2 \theta$$
So, $$\dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } \sin ^{ 2 }{ { 20 }^{ 0 } } }{ \sin ^{ 4 }{ { 20 }^{ 0 } } } $$
$$\displaystyle =\dfrac { \sin ^{ 4 }{ { 20 }^{ 0 } } }{ \sin ^{ 4 }{ { 20 }^{ 0 } } } $$
$$=1$$
Hence, $$\displaystyle \dfrac { \tan ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 } } }{ \tan ^{ 2 }{ { 20 }^{ 0 }. } \sin ^{ 2 }{ { 20 }^{ 0 } } }=1$$.