Self Studies

Introduction to Trigonometry Test - 33

Result Self Studies

Introduction to Trigonometry Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\text{cosec} \theta-\cot \theta = q,$$ then the value of $$\text{cosec} \theta$$ is
    Solution
    Let $$\displaystyle \csc { \theta  } -\cot { \theta  } =q$$        ...(1)

    $$\displaystyle \dfrac { \left( \csc { \theta  } -\cot { \theta  }  \right) \left( \csc { \theta  } +\cot { \theta  }  \right)  }{ \csc { \theta  } +\cot { \theta  }  } =q\\ \Rightarrow \dfrac { \csc ^{ 2 }{ \theta  } -\cot ^{ 2 }{ \theta  }  }{ \csc { \theta  } +\cot { \theta  }  } =q$$
    $$\Rightarrow \csc { \theta  } +\cot { \theta  } =\dfrac { 1 }{ q } $$          ...(2)
    Adding (1) & (2) we get,
    $$2\csc { \theta  } =q+\dfrac { 1 }{ q } \\ \therefore \quad \csc { \theta  } =\dfrac { 1 }{ 2 } \left( q+\dfrac { 1 }{ q }  \right) $$

    Ans: C
  • Question 2
    1 / -0
    If $$\displaystyle x= \frac{2\sin \alpha}{1+\cos \alpha+\sin \alpha}$$ then $$\displaystyle \frac{1-\cos \alpha+\sin \alpha}{1+\sin \alpha}$$ is equal to


    Solution
    $$x =\cfrac { 2sin\alpha  }{ 1+sin\alpha +cos\alpha  } \\ =\cfrac { 2sin\alpha  }{ \left( 1+sin\alpha  \right) +\left( cos\alpha  \right)  } \times \cfrac { \left( 1+sin\alpha  \right) -\left( cos\alpha  \right)  }{ \left( 1+sin\alpha  \right) -\left( cos\alpha  \right)  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ { \left( 1+sin\alpha  \right)  }^{ 2 }-{ \left( cos\alpha  \right)  }^{ 2 } } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 1+{ sin }^{ 2 }\alpha +2sin\alpha -{ cos }^{ 2 }\alpha  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 1+{ sin }^{ 2 }\alpha +2sin\alpha -1+{ sin }^{ 2 }\alpha  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 2{ sin }^{ 2 }\alpha +2sin\alpha  } \\ =\cfrac { 2sin\alpha \left( 1+sin\alpha -cos\alpha  \right)  }{ 2{ sin }\alpha \left( 1+sin\alpha  \right)  } \\ =\cfrac { \left( 1+sin\alpha -cos\alpha  \right)  }{ \left( 1+sin\alpha  \right)  } $$
  • Question 3
    1 / -0
    If $$\displaystyle \sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3} = 3,$$ then $$\displaystyle \cos \theta_{1}+\cos\theta_{2}+\cos \theta_{3} $$is equal to
    Solution
    given $$ \sin\theta_1 + \sin\theta_2 + \sin\theta_3 = 3$$
    we know maximum value of $$\sin\theta = 1$$  at $$\theta=\dfrac{\pi}{2}$$
    so above equation only satisfy if $$ \sin\theta_1 = 1, \sin\theta_2 = 1, $$and $$ \sin\theta_3 = 1$$ and $$\theta_1=\theta_2 =\theta_3=\dfrac{\pi}{2}$$
    $$\because \cos \dfrac{pi}{2}=0$$
    $$\Rightarrow \cos\theta_1 = 0, \cos\theta_2 = 0, $$and $$ \cos\theta_3 = 0 $$
    So, $$ \cos\theta_1 + \cos\theta_2 + \cos\theta_3 = 0$$
    Hence, option $$'D'$$ is correct.
  • Question 4
    1 / -0
    If $$\displaystyle \sin x+cosec x= 2 $$ then $$\displaystyle \sin ^{n}x+cosec^{n}x $$ is equal to
    Solution
    $$sinx+cosecx=2\\ sinx+\cfrac { 1 }{ sinx } =2$$
    Squaring both sides
    $${ sin }^{ 2 }x+\cfrac { 1 }{ { sin }^{ 2 }x } +2sinx.\cfrac { 1 }{ sinx } =4\\ { sin }^{ 2 }x+\cfrac { 1 }{ { sin }^{ 2 }x } =2$$
    Again squaring both sides
    $${ sin }^{ 4 }x+\cfrac { 1 }{ { sin }^{ 4 }x } +2{ sin }^{ 2 }x.\cfrac { 1 }{ { sin }^{ 2 }x } =4\\ { sin }^{ 4 }x+\cfrac { 1 }{ { sin }^{ 4 }x } =2$$
    Similarly
    $${ sin }^{ 8 }x+\cfrac { 1 }{ { sin }^{ 8 }x } =2$$
    and
    $${ sin }^{ n }x+\cfrac { 1 }{ { sin }^{ n }x } =2\\ { sin }^{ n }x+{ cosec }^{ n }x=2$$
  • Question 5
    1 / -0
    If $$\displaystyle sin \theta - cos \theta = 1$$, then the value of $$\displaystyle sin^3 \theta - cos^3 \theta$$ is
    Solution
    $$\sin { \theta  } -\cos { \theta  } =1$$   ....(1)

    Squaring both sides

    $${ \left( \sin { \theta - } \cos { \theta  }  \right)  }^{ 2 }={ 1 }^{ 2 }\\ \Rightarrow \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } -2\sin { \theta  } \cos { \theta  } =1\\ \Rightarrow \sin { \theta \cos { \theta  }  } =0$$

    Now taking cube on both sides of (1)

    $${ \left( \sin { \theta -\cos { \theta  }  }  \right)  }^{ 3 }={ 1 }^{ 3 }\\ \Rightarrow \sin ^{ 3 }{ \theta  } -\cos ^{ 3 }{ \theta  } -3\sin { \theta  } \cos { \theta  } \left( \sin { \theta -\cos { \theta  }  }  \right) =1\\$$  
                                             ............. Using $$(a-b)^3=a^3-b^3-3ab(a-b)$$

    $$ \Rightarrow \sin ^{ 3 }{ \theta  } -\cos ^{ 3 }{ \theta  } =1$$
  • Question 6
    1 / -0
    If $$cosec \theta -\sin \theta =m$$ and  $$\sec \theta -\cos \theta =n$$, eliminate $$\theta $$.

    Solution
    Given $$cosec \theta -\sin \theta =m$$ or  $$\displaystyle \frac{1}{\sin \theta }-\sin \theta =m$$
    or  $$\displaystyle \frac{1-\sin ^{2}\theta }{\sin \theta }=m$$ or $$\displaystyle \frac{\cos ^{2}\theta }{\sin \theta }=m$$          (i)
    Again   $$\sec \theta -\cos \theta =n$$ or $$\displaystyle \frac{1}{\cos \theta }-\cos \theta =n$$
    or  $$\displaystyle \frac{1-\cos ^{2}\theta }{\cos \theta }=n$$ or

    $$\displaystyle \frac{\sin ^{2}\theta }{\cos \theta }=n$$          (ii)
    From Eq. (i),   $$\displaystyle \sin \theta =\frac{\cos ^{2}\theta }{m}$$          (iii)
    Putting the value of $$\sin \theta $$ in Eq. (ii), we get
         $$\displaystyle \frac{\cos ^{4}}{m^{2}\cos \theta }=n$$ or $$\cos ^{3}=m^{2}n$$
    $$\therefore

    $$   $$\cos \theta =\left ( m^{2}n \right )^{1/3}$$ or $$\cos

    ^{2}\theta =\left ( m^{2}n \right )^{2/3}$$          (iv)
    From Eq. (iii), $$\displaystyle \sin \theta =\frac{\cos ^{2}\theta

    }{m}=\frac{\left ( m^{2}n \right

    )^{2/3}}{m}=\frac{m^{4/3}n^{2/3}}{m}=m^{1/3}n^{2/3}=\left ( mn^{2}

    \right )^{1/3}$$
    $$\therefore $$   $$\sin ^{2}\theta =\left ( mn^{2} \right )^{2/3}$$          (v)
    Adding Eqs. (iv) and (v), we get
         $$\left ( m^{2}n \right )^{2/3}+\left ( mn^{2} \right )^{2/3}=\cos ^{2}\theta +\sin ^{2}\theta $$
    or   $$\left ( m^{2}n \right )^{2/3}+\left ( mn^{2} \right )^{2/3}=1$$
  • Question 7
    1 / -0
    If $$\displaystyle \frac{x}{a}\cos \theta +\frac{y}{b}\sin \theta =1,\frac{x}{a}\sin \theta-\frac{y}{b}\cos \theta=1,$$ then eliminate $$\theta $$
    Solution
    Given, $$\displaystyle \frac { x }{ a } \cos  \theta +\frac { y }{ b } \sin  \theta =1,\frac { x }{ a } \sin  \theta -\frac { y }{ b } \cos  \theta =1$$

    Squaring and adding them
    $$\displaystyle \Rightarrow \frac { { x }^{ 2 } }{ { a }^{ 2 } } \cos ^{ 2 }{ \theta  } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } \sin ^{ 2 }{ \theta  } +\frac { 2xy }{ ab } \sin { \theta  } \cos { \theta  }+ $$

    $$\displaystyle \frac { { x }^{ 2 } }{ { a }^{ 2 } } \sin ^{ 2 }{ \theta  } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } \cos ^{ 2 }{ \theta  } -\frac { 2xy }{ ab } \sin { \theta  } \cos { \theta  } =1+1$$

    $$\displaystyle \Rightarrow \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =2$$
  • Question 8
    1 / -0
    The value of the expression $$\displaystyle \frac {tan^2 20^0 - sin^2 20^0}{tan^2 20^0 . sin^2 20^0}$$ is
    Solution
    Given expression is $$\displaystyle \dfrac { \tan ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 } }  }{ \tan ^{ 2 }{ { 20 }^{ 0 }. } \sin ^{ 2 }{ { 20 }^{ 0 } }  }$$

    We know that, $$\tan \theta=\dfrac{\sin \theta}{\cos \theta}$$

    Hence, $$\tan^2 \theta=\dfrac{\sin^2 \theta}{\cos^2 \theta}$$

    $$\Rightarrow \displaystyle \dfrac { \tan ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 } }  }{ \tan ^{ 2 }{ { 20 }^{ 0 }. } \sin ^{ 2 }{ { 20 }^{ 0 } }  } =\dfrac { \dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } }  }{ \cos ^{ 2 }{ { 20 }^{ 0 } }  } -\sin ^{ 2 }{ { 20 }^{ 0 } }  }{ \dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } }  }{ \cos ^{ 2 }{ { 20 }^{ 0 } }  } \sin ^{ 2 }{ { 20 }^{ 0 } }  } $$

    $$\displaystyle =\dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 }\cos ^{ 2 }{ { 20 }^{ 0 } }  }  }{ \sin ^{ 4 }{ { 20 }^{ 0 } }  } $$

    $$=\dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } \left( 1-\cos ^{ 2 }{ { 20 }^{ 0 } }  \right)  }{ \sin ^{ 4 }{ { 20 }^{ 0 } }  } $$

    We also know that, $$\sin^2 \theta+\cos^2\theta =1$$
    Hence, $$1-\cos^2\theta =\sin^2 \theta$$

    So, $$\dfrac { \sin ^{ 2 }{ { 20 }^{ 0 } } \sin ^{ 2 }{ { 20 }^{ 0 } } }{ \sin ^{ 4 }{ { 20 }^{ 0 } }  } $$

    $$\displaystyle =\dfrac { \sin ^{ 4 }{ { 20 }^{ 0 } }  }{ \sin ^{ 4 }{ { 20 }^{ 0 } }  } $$

    $$=1$$

    Hence, $$\displaystyle \dfrac { \tan ^{ 2 }{ { 20 }^{ 0 } } -\sin ^{ 2 }{ { 20 }^{ 0 } }  }{ \tan ^{ 2 }{ { 20 }^{ 0 }. } \sin ^{ 2 }{ { 20 }^{ 0 } }  }=1$$.

  • Question 9
    1 / -0
    If $$\displaystyle \sec \theta +\tan \theta=p$$, then find the value of $$\tan \theta$$.
    Solution
    $$\sec { \theta  } +\tan { \theta  } =p$$   ...(1)
    Now $$1+\tan ^{ 2 }{ \theta  } =\sec ^{ 2 }{ \theta  } \Rightarrow \sec ^{ 2 }{ \theta  } -\tan ^{ 2 }{ \theta  } =1$$
    $$\displaystyle\Rightarrow \left( \sec { \theta  } -\tan { \theta  }  \right) \left( \sec { \theta  } +\tan { \theta  }  \right) =1$$

    $$\displaystyle\Rightarrow \sec { \theta  } -\tan { \theta  } =\frac { 1 }{ \sec { \theta  } +\tan { \theta  }  } $$

    $$\displaystyle\Rightarrow \sec { \theta  } -\tan { \theta  } =\frac { 1 }{ p } $$   ...(2)

    Subtracting (2) from (1), we get
    $$\displaystyle \sec { \theta  } +\tan { \theta  } -\sec { \theta  } +\tan { \theta  } =p-\frac { 1 }{ p } $$

    $$\displaystyle\Rightarrow 2\tan { \theta  } =\left( p-\frac { 1 }{ p }  \right) \Rightarrow \tan { \theta  } =\frac { 1 }{ 2 } \left( p-\frac { 1 }{ p }  \right) $$
  • Question 10
    1 / -0
    If $$\displaystyle \left ( \sec \theta +\tan \theta  \right )\left ( \sec \phi +\tan \phi  \right )\left ( \sec \psi  +\tan \psi  \right )=\tan \theta \tan \phi \tan \psi $$ ,then $$\displaystyle \left ( \sec \theta -\tan \theta  \right )\left ( \sec \phi -\tan \phi  \right )\left ( \sec \psi  -\tan \psi  \right )$$ is equal to
    Solution
    $$1+\tan ^{ 2 }{ x } =\sec ^{ 2 }{ x } \\ \Rightarrow 1=\sec ^{ 2 }{ x } -\tan ^{ 2 }{ x } \\ \Rightarrow 1=\left( \sec { x } +\tan { x }  \right) \left( \sec { x } -\tan { x }  \right) $$

    $$\displaystyle \Rightarrow \left( \sec { x } -\tan { x }  \right) =\frac { 1 }{ \left( \sec { x } +\tan { x }  \right)  } $$

    Therefore
    $$\left( \sec  \theta -\tan  \theta  \right) \left( \sec  \phi -\tan  \phi  \right) \left( \sec  \psi -\tan  \psi  \right) $$

    $$\displaystyle =\frac { 1 }{ \left( \sec  \theta +\tan  \theta  \right) \left( \sec  \phi +\tan  \phi  \right) \left( \sec  \psi +\tan  \psi  \right)  } $$

    $$\displaystyle =\frac { 1 }{ \tan  \theta \tan  \phi \tan  \psi  } =\cot  \theta \cot  \phi \cot  \psi $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now