Self Studies

Introduction to Trigonometry Test - 35

Result Self Studies

Introduction to Trigonometry Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the length of $$AB$$ in cm

    Solution
    Given, $$BC = 30$$

    $$\angle AED = \angle ABC = 90$$
    Thus, $$DE = BC = 30$$

    Now, In $$\triangle ADE$$
    $$\tan 45 = \frac{AE}{DE}$$
    $$1 = \frac{AE}{30}$$
    $$AE = 30$$

    Now, In $$\triangle DBE$$
    $$\tan 60 = \frac{BE}{DE}$$
    $$BE = 30 \sqrt{3}$$

    Now, $$AB = BE + AE$$
    $$AB = 30\sqrt{3} + 30$$
    $$AB = 81.96$$ cm
  • Question 2
    1 / -0
    In the given figure; $$BC= 15$$ cm  and $$\displaystyle \sin B= \frac{4}{5}$$.
    The measure of $$AC$$ in cm is

    Solution

    In $$\triangle ABC$$, $$BC = 15$$, $$\sin B = \dfrac {4}{5}$$

    Now, $$\sin B = \dfrac {P}{H}$$
    $$\dfrac {4}{5} = \dfrac {AC}{AB}$$
    Then, let $$AC = 4x$$ and $$AB = 5x$$

    Now, $$AB^2 = AC^2 + BC^2$$
    $$(5x)^2 = (4x)^2 + 15^2$$
    $$25x^2 = 16x^2 + 225$$
    $$9x^2 = 225$$
    $$x = 5$$

    Hence, $$AC= 20$$ and $$AB = 25$$

  • Question 3
    1 / -0
    If in given figure $$AD= 2$$ cm, then value of $$AB$$ ( in cm )  is 

    Solution
    Given, $$AD \perp CE$$, $$\angle ACD = 45^{\circ}$$, $$AD =2 $$

    Now, In $$\triangle ADC$$
    $$\tan \angle ACD = \dfrac{P}{B} = \dfrac{AD}{CD}$$
    $$\tan 45 = \dfrac{2}{CD}$$
    $$CD = 2=AB$$
    $$AB=2$$ cm
  • Question 4
    1 / -0
    The length of $$AD$$ (in cm.) is

    Solution
    In $$\triangle ABC$$
    $$BC = AC$$
    Thus, $$\angle ABC = \angle ACB = x$$ (Isosceles triangle Property)

    Now, $$\angle ACD = \angle ABC + \angle ACB$$ (Exterior angle property)
    $$60 = x + x$$
    $$x = 30^{\circ}$$

    Now, $$\sin \angle ABC = \cfrac{P}{H}$$
    $$\sin 30 = \cfrac{AD}{AB}$$
    $$\cfrac{1}{2} = \cfrac{AD}{100}$$
    $$AD = 50$$ cm
  • Question 5
    1 / -0
    Find $$PQ$$, if $$\displaystyle AB = 150\ m, \angle P = 30^{\circ}$$ and $$\displaystyle \angle Q = 45^{\circ}$$

    Solution
    Given, $$AB = 30$$, $$\angle P = 30^{\circ}$$, $$\angle Q= 45^{\circ}$$

    In $$\triangle APB$$,
    $$\tan P = \cfrac{P}{B}$$
    $$\tan 30 = \cfrac{AB}{PB}$$
    $$\cfrac{1}{\sqrt{3}} = \cfrac{150}{PB}$$
    $$PB = 150 \sqrt{3}$$

    In $$\triangle ABQ$$,
    $$\tan Q = \cfrac{P}{B}$$
    $$\tan 45 = \cfrac{AB}{BQ}$$
    $$1 = \cfrac{150}{BQ}$$
    $$BQ = 150 $$

    Thus, $$AB = PB +BQ$$
    $$AB = 150\sqrt{3} + 150$$
    $$AB = 409.8$$
  • Question 6
    1 / -0
    In the given figure, $$\displaystyle \angle B = 60^{\circ}, \angle C =30^{\circ}, AB=8\ cm$$ and $$\displaystyle BC=25\ cm$$. 
    Calculate $$BE$$ in cm.

    Solution
    $$\angle B = 60$$, $$\angle C = 30$$, $$AB = 8$$, $$BC = 25$$

    Now, In $$\triangle ABE$$
    $$\cos B = \frac{B}{H} = \frac{BE}{AB}$$
    $$\cos 45 = \frac{BE}{8}$$
    $$BE = 4$$
  • Question 7
    1 / -0
    Find :
    $$AD$$

    Solution
    Given: $$AB = 12$$, $$\angle ACB = 30^{\circ}$$
    $$\angle ACB + \angle ABC + \angle BAC = 180$$
    $$30 + 90 + \angle BAC = 180$$
    $$\angle BAC = 60^{\circ}$$

    Now, In $$\triangle ABD$$
    Now, $$\cos 30 = \frac{B}{H} = \frac{AD}{AB}$$
    $$\frac{1}{2} = \frac{AD}{12}$$
    $$AD = 6$$
  • Question 8
    1 / -0
    $$(1+tan \alpha \ tan\beta)^2+(tan\alpha -tan\beta)^2$$ is equal to
    Solution
    $$(1+tan \alpha tan\beta)^2+(tan\alpha -tan\beta)^2$$ 

    $$=1+tan^2\alpha tan^2\beta+tan^2\alpha+tan^2\beta+2tan \alpha tan\beta-2tan \alpha tan\beta$$

    $$=1+tan^2\alpha tan^2\beta+tan^2\alpha+tan^2\beta$$

    $$=tan^2\alpha (1+tan^2\beta)+1(1+tan^2\beta)$$

    $$=(1+tan^2\alpha)(1+tan^2\beta)$$

    $$=sec^2\alpha sec^2\beta$$
  • Question 9
    1 / -0
    $$6(sin^6\theta+cos^6\theta)-9(sin^4\theta+cos^4\theta)$$ is equal to
    Solution
    Consider $$6(sin^6\theta+cos^6\theta)-9(sin^4\theta+cos^4\theta)$$

    $$=6[(sin^{ 2 }\theta )^{ 3 }+(cos^{ 2 }\theta )^{ 3 }]-9[(sin^{ 2 }\theta )^{ 2 }+(cos^{ 2 }\theta )^{ 2 }]$$

    $$=6[(sin^{ 2 }\theta +cos^{ 2 }\theta )^{ 3 }-3sin^{ 2 }\theta cos^{ 2 }\theta (sin^{ 2 }\theta +cos^{ 2 }\theta )]-9[(sin^{ 2 }\theta +cos^{ 2 }\theta )^{ 2 }-2sin^{ 2 }\theta cos^{ 2 }\theta ]$$

    $$=6(1-3sin^{ 2 }\theta cos^{ 2 }\theta )-9(1-2sin^{ 2 }\theta cos^{ 2 }\theta )$$

    $$=6-9=-3$$

  • Question 10
    1 / -0
    If $$\sin x+\sin^2x+\sin^3x=1$$, then $$\cos^6x-4\cos^4x+8 \cos^2x$$ is equal to
    Solution

    $$\sin x+{ \sin  }^{ 2 }x+{ \sin  }^{ 3 }x=1\Rightarrow \sin x+{ \sin  }^{ 3 }x=1-{ \sin  }^{ 2 }x\\ \Rightarrow \sin x\left( 1+\sin ^{ 2 }x \right) ={ \cos  }^{ 2 }x\Rightarrow \sin x\left( 2-{ \cos  }^{ 2 }x \right) ={ \cos  }^{ 2 }x\\ \Rightarrow { \sin  }^{ 2 }x{ \left( 2-{ \cos  }^{ 2 }x \right)  }^{ 2 }={ \cos  }^{ 4 }x\\ \Rightarrow \left( 1-{ \cos  }^{ 2 }x \right) \left( 4+{ \cos  }^{ 4 }x-4{ \cos  }^{ 2 }x \right) ={ \cos  }^{ 4 }x\\ \Rightarrow 4+{ \cos  }^{ 4 }x-4{ \cos  }^{ 2 }x-4{ \cos  }^{ 2 }x-{ \cos  }^{ 6 }x+4{ \cos  }^{ 4 }x={ \cos  }^{ 4 }x\\ \Rightarrow { \cos  }^{ 6 }x-4{ \cos  }^{ 4 }x+8{ \cos  }^{ 2 }x=4$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now