Self Studies

Introduction to Trigonometry Test - 39

Result Self Studies

Introduction to Trigonometry Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\tan ^{ 2 }{ 60^0 }  \text {cosec}^{ 2 }{45^0}+\sec ^{ 2 }{ 45^0 } \sin { 30 ^0}$$ is 
    Solution
    Substituting the values of the trigonometric ratios, we get 
    $$(\sqrt{3})^{2}(\sqrt{2})^{2}+(\sqrt{2})^{2}.\dfrac{1}{2}$$
    $$=3.2+1$$
    $$=7$$
  • Question 2
    1 / -0
    Choose the correct option
    $$\quad \displaystyle\frac{2\tan30^{\small\circ}}{1+(\tan30^{0})^{2}}$$
    Solution
    $$\quad \displaystyle\frac{2\tan30^{\small\circ}}{1+\tan30^{\small\circ}} = \displaystyle\frac{2\left(\displaystyle\frac{1}{\sqrt3}\right)}{1+\left(\displaystyle\frac{1}{\sqrt3}\right)^2} = \displaystyle\frac{\displaystyle\frac{2}{\sqrt3}}{1+\displaystyle\frac{1}{3}}$$

    $$\quad = \displaystyle\frac{2}{\sqrt3}\times\displaystyle\frac{3}{4} = \displaystyle\frac{\sqrt3}{2} = \sin60^{\small\circ}$$
  • Question 3
    1 / -0
    Find the value of $$\displaystyle \left( \frac{3  \cos  43^{\circ}}{\sin  47^{\circ}} \right)^2 -\frac{\cos  37 ^{\circ}.  \text{cosec}  53^{\circ}}{\tan  5^{\circ}.  \tan  25^{\circ}. \tan  45^{\circ}.  \tan  65^{\circ}  \tan  85^{\circ}} $$
    Solution
    $$\left( \dfrac{3  \cos  43^{\circ}}{\sin  47^{\circ}} \right)^2 -\dfrac{\cos  37 ^{\circ}.  \text{cosec}  53^{\circ}}{\tan  5^{\circ}.  \tan  25^{\circ}. \tan  45^{\circ}.  \tan  65^{\circ}  \tan  85^{\circ}} = ?$$

    $$=\left( \dfrac { 3\cos43^{ \circ  } }{ \sin47^{ \circ  } }  \right) ^{ 2 }-\dfrac { \cos37^{ \circ  }\times \text{cosec}53^{ \circ  } }{ \tan5^{ \circ  }\times \tan25^{ \circ  }\times \tan45^{ \circ  }\times \tan65^{ \circ  }\times \tan85^{ \circ  } } $$

    $$=\left( \dfrac { 3\sin47^{ \circ  } }{ \sin47^{ \circ  } }  \right) ^{ 2 }-\dfrac { \cos37^{ \circ  } }{ \sin53^{ \circ  } } \times \dfrac { 1 }{ \tan5^{ \circ  }\times \tan25^{ \circ  }\times (1)\times cot25^{ \circ  }\times cot5^{ \circ  } } $$

    $$=3^2 - \dfrac{\sin  53^{\circ}}{\sin  53^{\circ}} \times \dfrac{1}{\displaystyle \dfrac{\tan 5^{\circ}}{\tan 5^{\circ}} \times \dfrac{\tan 25^{\circ}}{\tan 25^{\circ}}}$$

    $$=9-1=8$$
    Hence, option 'D' is correct.
  • Question 4
    1 / -0
    The value of $$\displaystyle\frac{3}{4}\tan^230^{\small\circ} - 3\sin^260^{\small\circ} + cosec^245^{\small\circ}$$ is
    Solution
    Substituting the corresponding trigonometric values, we get
    $$\dfrac{3}{4}(\dfrac{1}{\sqrt{3}})^{2}-3(\dfrac{\sqrt{3}}{2})^{2}+(\sqrt{2})^{2}$$
    $$=\dfrac{3}{4}.\dfrac{1}{3}-3.\frac{3}{4}+2$$
    $$=\dfrac{1}{4}-\dfrac{9}{4}+2$$
    $$=\dfrac{-8}{4}+2$$
    $$=-2+2$$
    $$=0$$
  • Question 5
    1 / -0
    If $$\sec 4A = cosec (A-20^{\small\circ})$$, where $$4A$$ is an acute angle, find the value of $$A$$.
    Solution
    Hence
    $$\sin(A-20^{0})=\cos(4A)$$
    $$\sin(A-20^{0})=\sin(90^{0}-4A)$$
    Hence
    $$A-20^{0}=90^{0}-4A$$
    $$5A=110^{0}$$
    $$A=22^{0}$$
  • Question 6
    1 / -0
    The value of $$2\tan^260^{\small\circ} - 4\cos^245^{\small\circ} - 3\sec^230^{\small\circ}$$ is
    Solution
       $$2\tan^260^{\small\circ} - 4\cos^245^{\small\circ} - 3\sec^230^{\small\circ}$$
    $$=2(\sqrt3)^2-4(\dfrac{1}{\sqrt2})^2-3(\dfrac{2}{\sqrt 3})^2$$
    $$=2(3)-\dfrac{4}{2}-4$$
    $$=6-2-4$$
    $$=0$$
  • Question 7
    1 / -0
    Say yes or no.

    $$\tan48^{\small\circ}\tan23^{\small\circ}\tan42^{\small\circ}\tan67^{\small\circ} = 1$$
    Solution
    $$\quad LHS = \tan48^{\small\circ}\tan23^{\small\circ}\tan42^{\small\circ}\tan67^{\small\circ} $$

    $$\quad = \tan48^{\small\circ}\times\tan23^{\small\circ}\times\tan(90^{\small\circ} - 48^{\small\circ})\times\tan(90^{\small\circ} - 23^{\small\circ})$$

    $$\quad = \tan48^{\small\circ}\times\tan23^{\small\circ}\times cot 48^{\small\circ}\times cot 23^{\small\circ}$$

    $$\quad = \tan48^{\small\circ}\times\tan23^{\small\circ}\times\displaystyle\frac{1}{\tan48^{\small\circ}}\times\displaystyle\frac{1}{\tan23^{\small\circ}} = 1$$

    $$\therefore \quad LHS = RHS$$
  • Question 8
    1 / -0
    In $$\triangle ABC$$, $$\angle B = 90^{\small\circ}$$. If $$AB = 14\space cm$$ and $$AC = 50\space cm$$ then $$\tan A$$ equals:
    Solution
    In triangle ABC
    $$B=90^{0}$$
    Hence
    $$AC=50cm$$ will be the hypotenuse.
    And $$AB=14cm$$
    Therefore
    $$BC=\sqrt{AC^{2}-AB^{2}}cm$$
    $$=48cm$$
    Hence
    $$tanA$$
    $$=\dfrac{perpendicular}{base}$$

    $$=\dfrac{BC}{AB}$$

    $$=\dfrac{48}{14}$$

    $$=\dfrac{24}{7}$$
  • Question 9
    1 / -0
    If $$\sin\theta - \cos\theta = 0$$, then the value of $$(\sin^4\theta + \cos^4\theta)$$ is
    Solution
    From the above equation, we get
    $$\cos\theta=\sin\theta$$
    Hence
    $$\theta=45^{0}$$
    Therefore
    $$\sin^{4}\theta+\cos^{4}\theta$$
    $$=\sin^{4}45^{0}+\cos^{4}45^{0}$$
    $$=2\times(\dfrac{1}{\sqrt{2}})^{4}$$
    $$=2\times\dfrac{1}{4}$$
    $$=\dfrac{1}{2}$$
  • Question 10
    1 / -0
    $$\sin30^{\small\circ} + \cos60^{\small\circ}$$ equals
    Solution
    $$\sin30^{0}+\cos60^{0}$$
    $$=\sin30^{0}+\sin(90^{0}-60^{0})$$
    $$=2\sin30^{0}$$
    $$=2\times\dfrac{1}{2}$$
    $$=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now