Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    Find $$\theta$$, if $$\displaystyle\frac{2\tan\displaystyle\frac{\theta}{2}}{1 + \tan^2\displaystyle\frac{\theta}{2}} = 1,\quad 0^{\small\circ} < \theta \le 90^{\small\circ}$$

  • Question 2
    1 / -0

    Evaluate :$$\displaystyle \frac{5\sin ^{2}30^{\circ}+\cos ^{2}45^{\circ}+4\tan ^{2}60^{\circ}}{2\sin 30^{\circ}\cos 60^{\circ}+\tan 45^{\circ}}$$

  • Question 3
    1 / -0

    $$2(\sin^{6}{\theta}+\cos^{6}{\theta})-3(\sin^{4}{\theta}+\cos^{4}{\theta})+1$$ is equal to

  • Question 4
    1 / -0

    Value of $$\displaystyle\frac{\sin^{2}{{20}^{o}}+\cos^{4}{{20}^{o}}}{\sin^{4}{{20}^{o}}+\cos^{2}{{20}^{o}}}$$ is

  • Question 5
    1 / -0

    If $$\displaystyle \tan \theta =\frac{x}{y},$$ then $$\displaystyle \frac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta }$$ is equal to 

  • Question 6
    1 / -0

    If $$\theta$$ is an acute angle such that $$\tan^{2}{\theta}=\dfrac{8}{7}$$,then the value of $$\displaystyle\frac{(1+\sin{\theta})(1-\sin{\theta})}{(1+\cos{\theta})(1-\cos{\theta})}$$ is

  • Question 7
    1 / -0

    If $$\sin{x}+\sin^{2}{x}=1$$, then $$\cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2$$ is equals to

  • Question 8
    1 / -0

    If $$\displaystyle \tan 2A= \cot (A-60^{\circ}),$$ where 2A is an acute angle, then the value of A is 

  • Question 9
    1 / -0

    If $$(\sec{A}-\tan{A})(\sec{B}-\tan{B})(\sec{C}-\tan{C})=(\sec{A}+\tan{A})(\sec{B}+\tan{B})(\sec{C}+\tan{C})$$ represents each side of a equilateral triangle, then each side is equal to -

  • Question 10
    1 / -0

    If  $$\mathrm{cosec} {A}+\cot{A}=\cfrac{11}{2}$$, then $$\tan{A}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now