Self Studies

Introduction to Trigonometry Test - 41

Result Self Studies

Introduction to Trigonometry Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find $$\theta$$, if $$\displaystyle\frac{2\tan\displaystyle\frac{\theta}{2}}{1 + \tan^2\displaystyle\frac{\theta}{2}} = 1,\quad 0^{\small\circ} < \theta \le 90^{\small\circ}$$
    Solution
    Put $$ \displaystyle\frac{\theta}{2} = A$$, then we must have $$\displaystyle\frac{2\tan A}{1+\tan^2A} = 1$$
    $$ \Rightarrow 1+\tan^2A - 2\tan A = 0$$
    $$ \Rightarrow(1-\tan A)^2 = 0$$
    $$ \Rightarrow\tan A = 1 = \tan45^{\small\circ}$$
    $$A = 45^{\small\circ}$$
    We know $$\displaystyle\frac{\theta}{2} = A = 45^{\small\circ} $$
    $$\Rightarrow \displaystyle\frac{\theta}{2} = 45^{\small\circ} $$
    $$ \Rightarrow \theta = 90^{\small\circ}$$
  • Question 2
    1 / -0
    Evaluate :$$\displaystyle \frac{5\sin ^{2}30^{\circ}+\cos ^{2}45^{\circ}+4\tan ^{2}60^{\circ}}{2\sin 30^{\circ}\cos 60^{\circ}+\tan 45^{\circ}}$$
    Solution
    $$\displaystyle \dfrac{5\sin ^{2}30^{\circ}+\cos ^{2}45^{\circ}+4\tan ^{2}60^{\circ}}{2\sin 30^{\circ}\cos 60^{\circ}+\tan 45^{\circ}}$$

    = $$\displaystyle \dfrac{5(\dfrac{1}{2})^2 + (\dfrac{1}{\sqrt{2}})^2 + 4(\sqrt{3})^2}{2(\dfrac{1}{2})(\dfrac{1}{2}) + 1}$$

    = $$\displaystyle \dfrac{\dfrac{5}{4} + \dfrac{1}{2} + 12}{\dfrac{1}{2} + 1}$$

    = $$\displaystyle \dfrac{\dfrac{5 + 48 + 2}{4}}{\dfrac{3}{2}}$$

    = $$\displaystyle \dfrac{55}{6}$$

    = $$\displaystyle 9\dfrac{1}{6}$$
  • Question 3
    1 / -0
    $$2(\sin^{6}{\theta}+\cos^{6}{\theta})-3(\sin^{4}{\theta}+\cos^{4}{\theta})+1$$ is equal to
    Solution
    $$2\left( \sin ^{ 6 }{ \theta  } +\cos ^{ 6 }{ \theta  }  \right) -3\left( \sin ^{ 4 }{ \theta  } +\cos ^{ 4 }{ \theta  }  \right) +1$$

    Using $$(a^3+b^3=(a+b)^3-3\cdot a\cdot b(a+b)) \  and \ (a^2+b^2=(a+b)^2-2ab) $$, we get

    $$ =2\left( { \left( \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  \right)  }^{ 3 }-3\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } \left( \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  \right)  \right)  -3\left( { \left( \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  \right)  }^{ 2 }-2\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  }  \right) +1$$

    $$ =2-6\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } -3+6\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } +1=0$$
  • Question 4
    1 / -0
    Value of $$\displaystyle\frac{\sin^{2}{{20}^{o}}+\cos^{4}{{20}^{o}}}{\sin^{4}{{20}^{o}}+\cos^{2}{{20}^{o}}}$$ is
    Solution
    $$\displaystyle\frac{\sin^{2}{{20}^{o}}+\cos^{4}{{20}^{o}}}{\sin^{4}{{20}^{o}}+\cos^{2}{{20}^{o}}}$$

    $$\displaystyle=\frac{\sin^{2}{20^0}+\cos^{2}{20^0}.\cos^{2}{20^0}}{\sin^{2}{20^0}.\sin^{2}{20^0}+\cos^{2}{20^0}}$$

    $$\displaystyle=\frac{\sin^{2}{20^0}+\cos^{2}{20^0}(1-\sin^{2}{20^0})}{\sin^{2}{20^0}(1-\cos^{2}{20^0})+\cos^{2}{20^0}}$$

    $$=\displaystyle\frac{\sin^{2}{20^0}+\cos^{2}{20^0}-\sin^{2}{20^0}\cos^{2}{20^0}}{\sin^{2}{20^0}-\sin^{2}{20^0}\cos^{2}{20^0}+\cos^{2}{20^0}}$$

    $$=\displaystyle\frac{1-\sin^{2}{20^0}\cos^{2}{20^0}}{\sin^{2}{20^0}-\sin^{2}{20^0}\cos^{2}{20^0}+\cos^{2}{20^0}}$$

    $$=\displaystyle\frac{1-\sin^{2}{20^0}\cos^{2}{20^0}}{1-\sin^{2}{20^0}\cos^{2}{20^0}}=1$$
  • Question 5
    1 / -0
    If $$\displaystyle \tan \theta =\frac{x}{y},$$ then $$\displaystyle \frac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta }$$ is equal to 
    Solution
    $$\displaystyle \cfrac{x\sin \theta +y\cos \theta }{x\sin \theta -y\cos \theta }$$

    Multiply and divide by $$\cos \theta$$
    $$=\cfrac{x\cfrac{\sin \theta }{\cos \theta }+y\cfrac{\cos \theta }{\cos \theta }}{x\cfrac{\sin \theta }{\cos \theta }-y\cfrac{\cos \theta}{\cos \theta }}$$

    $$=\cfrac{x\times\cfrac{x}{y}+y}{x\times\cfrac{x}{y}-y}$$
    $$=\cfrac{\cfrac{x^{2}+y^{2}}{y}}{\cfrac{x^{2}-y^{2}}{y}}$$
    $$=\cfrac{x^{2}+y^{2}}{x^{2}-y^{2}}$$
  • Question 6
    1 / -0
    If $$\theta$$ is an acute angle such that $$\tan^{2}{\theta}=\dfrac{8}{7}$$,then the value of $$\displaystyle\frac{(1+\sin{\theta})(1-\sin{\theta})}{(1+\cos{\theta})(1-\cos{\theta})}$$ is
    Solution
    $$\displaystyle \frac { \left( 1+\sin { \theta  }  \right) \left( 1-\sin { \theta  }  \right)  }{ \left( 1+\cos { \theta  }  \right) \left( 1-\cos { \theta  }  \right)  } =\frac { 1-sin^{ 2 }{ \theta  } }{ 1-cos^{ 2 }{ \theta  } } =\frac { \cos ^{ 2 }{ \theta  }  }{ sin^{ 2 }{ \theta  } } =\frac { 1 }{ \tan ^{ 2 }{ \theta  }  } =\frac { 7 }{ 8 } $$
  • Question 7
    1 / -0
    If $$\sin{x}+\sin^{2}{x}=1$$, then $$\cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2$$ is equals to
    Solution
    Given $$\sin{x}+\sin^{2}{x}=1$$
    $$\Rightarrow \sin x=\cos^2 x$$

    Now,$$\cos^{12}{x}+3\cos^{10}{x}+3\cos^{8}{x}+\cos^{6}{x}-2$$
    $$= \sin^{6}{x}+3\sin^{5}{x}+3\sin^{4}{x}+\sin^{3}{x}-2$$
    $$={ (\sin ^{ 2 }{ x } ) }^{ 3 }+3{ (\sin ^{ 2 }{ x } ) }^{ 2 }\sin { x } +3{ (\sin ^{ 2 }{ x } ) }^{ 2 }+\sin ^{ 2 }{ x } \sin { x } -2$$
    $$={ (\sin ^{ 2 }{ x } ) }^{ 3 }+3{ (\sin ^{ 2 }{ x } ) }^{ 2 }\sin { x } +3\sin ^{ 2 }{ x } { (\sin { x } ) }^{ 2 }+\sin ^{ 3 }{ x } -2$$
    $$={(\sin^{2}{x}+\sin{x})}^{3}-2$$
    $$=1-2=-1$$
  • Question 8
    1 / -0
    If $$\displaystyle \tan 2A= \cot (A-60^{\circ}),$$ where 2A is an acute angle, then the value of A is 
    Solution
    $$\displaystyle \tan 2A= \cot (A-60^{\circ})$$
    $$\cot (90 - 2A) = \cot (A - 60)$$
    $$90 - 2 A = A - 60$$
    $$3A = 150$$
    $$A = 50^{\circ}$$
  • Question 9
    1 / -0
    If $$(\sec{A}-\tan{A})(\sec{B}-\tan{B})(\sec{C}-\tan{C})=(\sec{A}+\tan{A})(\sec{B}+\tan{B})(\sec{C}+\tan{C})$$ represents each side of a equilateral triangle, then each side is equal to -
    Solution
    Let $$\left ( \sec A+\tan A \right )\left ( \sec B+\tan B \right )\left ( \sec C+\tan C \right )=x$$............(i)

        $$\therefore \left ( \sec A-\tan A \right )\left ( \sec B-\tan B \right )\left ( \sec C-\tan C \right )=x$$.............(ii)


    Multiplying Eqs. (i) and (ii), we get

        $$\left ( \sec ^{2}A-\tan ^{2}A \right )\left ( \sec ^{2}B-\tan ^{2}B \right )\left ( \sec ^{2}C-\tan ^{2}C \right )=x^{2}$$...........$$\left ( \sec ^{2}A-\tan ^{2}A \right )=1$$

    or   $$x^{2}=1$$ $$\therefore $$   $$x=\pm 1$$

    Hence, each side is equal to $$\pm 1$$.
  • Question 10
    1 / -0
    If  $$\mathrm{cosec} {A}+\cot{A}=\cfrac{11}{2}$$, then $$\tan{A}$$ is equal to
    Solution
    Given, $$\displaystyle cosec { A } +\cot { A } =\frac { 11 }{ 2 } $$

    $$\displaystyle \Rightarrow { \left( cosec { A } +\cot { A }  \right)  }^{ 2 }=\frac { 121 }{ 4 } $$

    $$\displaystyle \Rightarrow cosec ^{ 2 }{ A } +\cot ^{ 2 }{ A } +2 cosec { A } \cot { A } =\frac { 121 }{ 4 } $$

    $$\displaystyle \Rightarrow \frac { 2\cos ^{ 2 }{ A } +\sin ^{ 2 }{ A } +2\cos { A }  }{ \sin ^{ 2 }{ A }  } =\frac { 121 }{ 4 } $$

    Applying componendo and dividendo
    $$\displaystyle \frac { 2\cos ^{ 2 }{ A } +\sin ^{ 2 }{ A } +2\cos { A } -\sin ^{ 2 }{ A }  }{ 2\cos ^{ 2 }{ A } +\sin ^{ 2 }{ A } +2\cos { A } +\sin ^{ 2 }{ A }  } =\frac { 121-4 }{ 121+4 } $$

    $$\displaystyle \Rightarrow \frac { 2\cos ^{ 2 }{ A } +2\cos { A }  }{ 2+2\cos { A }  } =\frac { 117 }{ 125 } $$

    $$\displaystyle \Rightarrow \cos { A } =\frac { 117 }{ 125 } \Rightarrow \tan { A } =\frac { 44 }{ 117 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now