Self Studies

Introduction to Trigonometry Test - 43

Result Self Studies

Introduction to Trigonometry Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin ^{2}60^{\circ}-2\text{cosec} ^{2}60^{\circ}-\frac{3}{4}\tan ^{2}30^{\circ}$$ is 
    Solution
    $$\displaystyle \frac{4}{3}\cot ^{2}30^{\circ}+3\sin

    ^{2}60^{\circ}-2\text{cosec}^{2}60^{\circ}-\frac{3}{4}\tan

    ^{2}30^{\circ}$$
    $$= \displaystyle \frac{4}{3}(\sqrt 3)^2+3(\frac {\sqrt 3}{2})^2-2(\frac {2}{\sqrt 3})^2-\frac{3}{4}(\frac {1}{\sqrt 3})^2$$
    $$=\displaystyle \frac{4}{3}\times 3+3\times \frac {3}{4}-2\times \frac {4}{3}-\frac{3}{4}\times \frac {1}{3}$$
    $$=\displaystyle 4+ \frac {9}{4}- \frac {8}{3}-\frac{1}{4}$$
    $$=\displaystyle \frac {10}{3}$$
    Option C is correct.
  • Question 2
    1 / -0
    $$\displaystyle \frac{4}{\cot ^{2}30^{\circ}}+\frac{1}{\sin^{2}60^{\circ} }-\cos ^{2}45^{\circ}$$ is

    Solution
    $$\displaystyle \frac{4}{\cot ^{2}30^{\circ}}+\frac{1}{\sin^{2}60^{\circ} }-\cos ^{2}45^{\circ}$$
    $$=\displaystyle \frac{4}{\left(\sqrt 3\right)^2}+\dfrac{1}{\left(\dfrac {\sqrt 3}{2}\right)^2 }- \left(\frac {1}{\sqrt 2}\right)^2$$

    $$=\displaystyle \frac{4}{3}+\frac{4}{3}- \frac {1}{2}$$

    $$=\displaystyle \frac{8}{3}- \frac {1}{2} = \frac {13}{6}$$

    Option C is correct.
  • Question 3
    1 / -0
    If $$\displaystyle \tan 32^0.\cot (90^0-\theta )=1$$ find $$\theta $$.
    Solution
    Given, $$\tan  32^0.\cot (90^0-\theta )=1$$
    $$\Rightarrow \tan  32^0=\dfrac1{\cot (90^0-\theta )}$$
    $$\Rightarrow \tan  32^0=\tan  (90^0-\theta )$$
    $$\Rightarrow  (90^0-\theta )=32^0$$
    $$\Rightarrow  \theta=90^0-32^0$$
    $$=58^0$$
    Option A is correct.
  • Question 4
    1 / -0
    The value of the expression $$\displaystyle \frac{5\sin ^{2}30^{\circ}+\cos ^{2}45^{\circ}+4\tan ^{2}60^{\circ}}{2\sin 30^{\circ}\cos 60^{\circ}+\tan 45^{\circ}}$$ is 
    Solution
    $$\displaystyle \frac{5\sin ^{2}30^{\circ}+\cos ^{2}45^{\circ}+4\tan

    ^{2}60^{\circ}}{2\sin 30^{\circ}\cos 60^{\circ}+\tan 45^{\circ}}$$

    $$=\displaystyle \dfrac{5(\dfrac{1}{2})^2+(\dfrac {1}{\sqrt 2})^2+4\times (\sqrt 3)^2}{2\times \dfrac {1}{2}\times \dfrac {1}{2}+1}$$

    $$=\displaystyle \dfrac {\dfrac 54+ \dfrac 12+ 4\times 3}{\dfrac 12+ 1}$$

    $$=\displaystyle \dfrac {\dfrac 74+ 12}{\dfrac 32}$$

    $$=\displaystyle \dfrac {\dfrac {55}{4}}{\dfrac 32}$$

    $$=\displaystyle \dfrac {55}{6}$$

    Option D is correct.
  • Question 5
    1 / -0
    The value of $$\displaystyle \csc (65^0+\theta )-\sec (25^0-\theta )-\tan (55^0-\theta )+\cot (35^0+\theta )$$ is
    Solution
    Given, $$\displaystyle \csc (65^{\circ}+\theta )-\sec (25-\theta )-\tan (55-\theta )+\cot (35+\theta )$$ 
    $$= \displaystyle \csc (90^{\circ}-25^{\circ}+\theta )-\sec (25^{\circ}-\theta )-\tan (55^{\circ}-\theta )+\cot (90^{\circ}-55^{\circ}+\theta )$$ 
    $$= \displaystyle \csc (90^{\circ}-(25^{\circ}-\theta) )-\sec (25^{\circ}-\theta )-\tan (55^{\circ}-\theta )+\cot (90^{\circ}-(55^{\circ}-\theta) )$$
    $$= \displaystyle  \sec (25^{\circ}-\theta)-\sec (25^{\circ}-\theta )-\tan (55^{\circ}-\theta )+\tan (55^{\circ}-\theta )$$
    $$=0$$
  • Question 6
    1 / -0
    Find the value of 
    $$\displaystyle 4\left( { \sin }^{ 4 }{ 30 }^{ o }+{ \cos }^{ 4 }{ 60 }^{ o } \right) -3\left( { \sin }^{ 2 }{ 45 }^{ o }-2{ \cos }^{ 2 }{ 45 }^{ o } \right) $$
    Solution
    $$4(sin^{4}30^{0}+cos^{4}60^{0})-3(sin^{2}45^{0}-2cos^{2}45^{0})$$
    Put the value of $$\sin$$ and $$\cos$$ we get:
    =$$\left [ \left ( \frac{1}{2} \right )^{2}+\left ( \frac{1}{2} \right )^{4} \right ]-3\left [ \left ( \frac{1}{\sqrt{2}} \right )^{2}-2\left ( \frac{1}{\sqrt{2}} \right )^{2} \right ]$$
    =$$4\left ( \frac{1}{16}+\frac{1}{16} \right )-3\left ( \frac{1}{2}-2(\frac{1}{2}) \right )$$
    =$$\frac{1}{2}+\frac{3}{2}=2$$
  • Question 7
    1 / -0
    The value of $$\displaystyle \frac{2\sin 67^{\circ}}{\cos 23^{\circ}}-\frac{\cot 40^{\circ}}{\tan 50^{\circ}}$$
    Solution
    $$\displaystyle \frac{2\sin  67^0}{\cos  23^0}-\frac{\cot 40^0}{\tan 50^0}=\displaystyle \frac{2\sin  (90^0-23^0)}{\cos  23^0}-\frac{\cot (90^0-50^0)}{\tan50^0}$$

    $$=\displaystyle \frac{2\cos 23^0}{\cos  23^0}-\frac{\tan50^0}{\tan 50^0}$$

    $$=2-1=1$$

    Option B is correct.
  • Question 8
    1 / -0
    The value of $$tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}....tan\;89^{\circ}$$ is
    Solution
    $$tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}....tan\;45^{\circ}.....tan\;87^{\circ}\;tan\;88^{\circ}\;tan\;89^{\circ}$$
    $$=tan\;1^{\circ}\;tan\;2^{\circ}\;tan\;3^{\circ}.....tan\;45^{\circ}.....cot\;3^{\circ}\;cot\;2^{\circ}\;cot\;1^{\circ}=1$$
  • Question 9
    1 / -0
    The value of  $$\displaystyle { \text{cosec} }^{ 2 }\left( { 90 }^{ o }-\theta  \right) -{ \tan }^{ 2 }\theta $$ is :
    Solution
    The value of $$\text{cosec} ^2(90-\theta)-\tan ^2\theta$$ is
    $$=\displaystyle { \sec }^{ 2 }\theta -{ \tan }^{ 2 }\theta $$

    $$=\dfrac { 1 }{ { \cos }^{ 2 }\theta  } -\dfrac { { \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } =\dfrac { 1-{ \sin }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  }$$

    $$ =\dfrac { { \cos }^{ 2 }\theta  }{ { \cos }^{ 2 }\theta  } $$

    $$=1$$
  • Question 10
    1 / -0
    $$\displaystyle \tan { { 5 }^{ o } } .\tan { { 40 }^{ o } } .\tan { 4{ 5 }^{ o } } .\tan { { 50 }^{ o } } .\tan { 8{ 5 }^{ o } } $$ is equal to :
    Solution
    The value of $$\tan 5^o. \tan 40^o. \tan 45^o. \tan 50^o. \tan 85^o$$ is
    $$=\displaystyle \tan { { 5 }^{ o } } .\tan { \left( { 90 }^{ o }-{ 5 }^{ o } \right) . } \tan { { 40 }^{ o } } .\tan { \left( { 90 }^{ o }-{ 40 }^{ o } \right)  } . \tan 45^o$$
    $$\displaystyle =\tan { { 5 }^{ o } } .\cot { { 5 }^{ o } } .\tan { { 40 }^{ o } } .\cot{ { 40 }^{ o } }.1$$
    $$\displaystyle =1\times 1\times 1$$
    $$=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now