Self Studies

Introduction to Trigonometry Test - 45

Result Self Studies

Introduction to Trigonometry Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle {\text{cosec} }^{ 2 }{ 67 }^{ o }-{ \tan }^{ 2 }{ 23 }^{ o }$$ is :
    Solution
    $$\displaystyle { \text{cosec } }^{ 2 }{ 67 }^{ o }-{ \tan }^{ 2 }{ 23 }^{ o }=1+{ \cot }^{ 2 }{ 67 }^{ o }-{ \tan }^{ 2 }{ 23 }^{ o }$$
    $$\displaystyle \left[ \because \quad { \text{cosec } }^{ 2 }\theta =1+{ \cot }^{ 2 }\theta  \right] $$
    $$\displaystyle =1+{ \cot }^{ 2 }\left( { 90 }^{ o }-{ 23 }^{ o } \right) -{ \tan }^{ 2 }{ 23 }^{ o }$$
    $$\displaystyle =1+{ \tan }^{ 2 }{ 23 }^{ o }-{ \tan }^{ 2 }{ 23 }^{ o }=1+0=1$$
  • Question 2
    1 / -0
    The value of $$\displaystyle \frac { \cos { \left( { 90 }^{ o }-A \right)  }  }{ \text{cosec}\left( { 90 }^{ o }-A \right)  } \times \frac { \cot{ \left( { 90 }^{ o }-A \right)  } }{ \sin { A }  } $$ is
    Solution
    The value of $$\displaystyle \frac { \cos { \left( { 90 }^{ o }-A \right)  }  }{ \text{cosec}\left( { 90 }^{ o }-A \right)  } \times \frac { \cot{ \left( { 90 }^{ o }-A \right)  } }{ \sin { A }  } $$ is equal to

    $$=\displaystyle \frac { \sin { A }  }{ \sec { A }  } \times \frac { \tan { A }  }{ \sin { A }  } $$

    $$=\dfrac { \tan { A }  }{ \sec { A }  }$$

    $$ =\dfrac { \frac { \sin { A }  }{ \cos { A }  }  }{ \frac { 1 }{ \cos { A }  }  } $$

    $$=\sin { A } $$
  • Question 3
    1 / -0
    The value of $$\displaystyle { \left( \frac { \sin { { 47 }^{ o } }  }{ \cos { { 43 }^{ o } }  }  \right)  }^{ 2 }+{ \left( \frac { \cos { { 43 }^{ o } }  }{ \sin { { 47 }^{ o } }  }  \right)  }^{ 2 }-4{ \cos }^{ 2 }{ 45 }^{ o }$$ is :
    Solution
    The value of $$\displaystyle { \left( \frac { \sin { { 47 }^{ o } }  }{ \cos { { 43 }^{ o } }  }  \right)  }^{ 2 }+{ \left( \frac { \cos { { 43 }^{ o } }  }{ \sin { { 47 }^{ o } }  }  \right)  }^{ 2 }-4{ \cos }^{ 2 }{ 45 }^{ o }$$ is
    $$\displaystyle ={ \left[ \frac { \sin { { 47 }^{ o } }  }{ { \cos\left( 90-47 \right)  }^{ o } }  \right]  }^{ 2 }+{ \left[ \frac { \cos { { 43 }^{ o } }  }{ { \sin\left( 90-43 \right)  }^{ o } }  \right]  }^{ 2 }-{ 4\left( \frac { 1 }{ \sqrt { 2 }  }  \right)  }^{ 2 }$$
    $$\displaystyle ={ \left( \frac { \sin { 47 }  }{ \sin { 47 }  }  \right)  }^{ 2 }+{ \left( \frac { \cos { 43 }  }{ \cos { 43 }  }  \right)  }^{ 2 }-4\left( \frac { 1 }{ 2 }  \right) $$
    $$\displaystyle ={ \left( 1 \right)  }^{ 2 }+{ \left( 1 \right)  }^{ 2 }-4\times \frac { 1 }{ 2 } $$
    $$=1+1-2=0$$
  • Question 4
    1 / -0
    The value of $$\displaystyle \frac { 2\cos { { 67 }^{ o } }  }{ \sin { { 23 }^{ o } }  } -\frac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  } $$ is :
    Solution
    $$\displaystyle \frac { 2\cos { { 67 }^{ o } }  }{ \sin { { 23 }^{ o } }  } -\frac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  }$$

    $$\displaystyle =\frac { 2\cos { \left( { 90 }^{ o }-{ 23 }^{ o } \right)  }  }{ \sin { { 23 }^{ o } }  } -\frac { \tan { \left( { 90 }^{ o }-{ 50 }^{ o } \right)  }  }{ \cot { { 50 }^{ o } }  } $$

    $$\displaystyle =\frac { 2\sin { { 23 }^{ o } }  }{ \sin { { 23 }^{ o } }  } -\frac { \cot { { 50 }^{ o } }  }{ \cot { { 50 }^{ o } }  }$$

    $$\displaystyle \left[ \because \quad \cos { \left( { 90 }^{ o }-\theta  \right)  } =\sin { \theta  } ,\tan { \left( { 90 }^{ o }-\theta  \right) =\cot { \theta  }  }  \right] $$

    $$\displaystyle =2-1=1$$
  • Question 5
    1 / -0
    The value of $$\displaystyle \frac { \cot { { 50 }^{ o } }  }{ \tan { { 40 }^{ o } }  } $$ is :
    Solution
    The value of $$\displaystyle \frac { \cot { { 50 }^{ o } }  }{ \tan { { 40 }^{ o } }  } $$
    $$=\dfrac { \cot { \left( { 90 }^{ o }-{ 40 }^{ o } \right)  }  }{ \tan { { 40 }^{ o } }  } $$
    $$=\dfrac { \tan { { 40 }^{ o } }  }{ \tan { { 40 }^{ o } }  } =1$$
    $$\displaystyle \left[ \because \quad \cot { \left( { 90 }^{ o }-\theta  \right)  } =\tan { \theta  }  \right] $$
  • Question 6
    1 / -0
    The value of $$\displaystyle \frac { \tan { { 49 }^{ o } }  }{ \cot { { 41 }^{ o } }  } $$ is :
    Solution
    The value of $$\displaystyle \frac { \tan { { 49 }^{ o } }  }{ \cot { { 41 }^{ o } }  } $$
    $$=\dfrac { \tan { \left( { 90 }^{ o }-{ 41 }^{ o } \right)  }  }{ \cot { { 41 }^{ o } }  }$$
    $$ =\dfrac { \cot { { 41 }^{ o } }  }{ \cot { { 41 }^{ o } }  } =1$$
    $$\displaystyle \left[ \because \quad \tan { \left( { 90 }^{ o }-\theta  \right) =\cot { \theta  }  }  \right] $$
  • Question 7
    1 / -0
    The value of $$\displaystyle \frac { \cot { { 40 }^{ o } }  }{ \tan { { 50 }^{ o } }  } -\frac { 1 }{ 2 } \left( \frac { \cos { { 35 }^{ o } }  }{ \sin { { 55 }^{ o } }  }  \right) $$ is 
    Solution
    The value of $$\displaystyle \frac { \cot { { 40 }^{ o } }  }{ \tan { { 50 }^{ o } }  } -\frac { 1 }{ 2 } \left( \frac { \cos { { 35 }^{ o } }  }{ \sin { { 55 }^{ o } }  }  \right) $$ is

    $$\displaystyle =\frac { \cot { \left( { 90 }^{ o }-{ 50 }^{ o } \right)  }  }{ \tan { { 50 }^{ o } }  } -\frac { 1 }{ 2 } \left[ \frac { \cos { \left( { 90 }^{ o }-{ 55 }^{ o } \right)  }  }{ \sin { { 55 }^{ o } }  }  \right] $$

    $$\displaystyle =\frac { \tan { { 50 }^{ o } }  }{ \tan { { 50 }^{ o } }  } -\frac { 1 }{ 2 } \left( \frac { \sin { { 55 }^{ o } }  }{ \sin { { 55 }^{ o } }  }  \right) $$

    $$=1-\dfrac { 1 }{ 2 } \times 1=\dfrac { 1 }{ 2 } $$
  • Question 8
    1 / -0
    The value of $$\displaystyle \frac { \cos { \left( { 90 }^{ o }-A \right)  }  }{ 1+\sin { \left( { 90 }^{ o }-A \right)  }  } +\frac { 1+\sin { \left( { 90 }^{ o }-A \right)  }  }{ \cos { \left( { 90 }^{ o }-A \right)  }  } $$ is equal to :
    Solution
    Given that:
    $$\displaystyle \frac { \cos { \left( { 90 }^{ o }-A \right)  }  }{ 1+\sin { \left( { 90 }^{ o }-A \right)  }  } +\frac { 1+\sin { \left( { 90 }^{ o }-A \right)  }  }{ \cos { \left( { 90 }^{ o }-A \right)  }  } $$

    $$=\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}=\dfrac{\sin^2A+(1+\cos A)^2}{\sin A(1+\cos A)}$$
    $$=\dfrac{\sin^2A+\cos^2A+2\cos A+1}{\sin A(1+\cos A)}=\dfrac{2+2\cos A}{\sin A(1+\cos A)}=\dfrac{2}{\sin A}$$
  • Question 9
    1 / -0
    The value of $$\displaystyle \frac { \cos { { 75 }^{ o } }  }{ \sin { { 15 }^{ o } }  } +\frac { \sin { { 12 }^{ o } }  }{ \cos { { 78 }^{ o } }  } -\frac { \cos { { 18 }^{ o } }  }{ \sin { { 72 }^{ o } }  } $$ is :
    Solution
    we have, $$\displaystyle \cos { { 75 }^{ o } } =\cos { \left( { 90 }^{ o }-{ 15 }^{ o } \right) = } \sin { { 15 }^{ o } } $$
    $$\displaystyle \sin { { 12 }^{ o } } =\sin { \left( { 90 }^{ o }-{ 78 }^{ o } \right)  } =\cos { { 78 }^{ o } } $$
    $$\displaystyle \cos { { 18 }^{ o } } =\cos { \left( { 90 }^{ o }-{ 72 }^{ o } \right)  } =\sin { { 72 }^{ o } } $$

    $$\displaystyle \therefore \quad \frac { \cos { { 75 }^{ o } }  }{ \sin { { 15 }^{ o } }  } +\frac { \sin { { 12 }^{ o } }  }{ \cos { { 78 }^{ o } }  } -\frac { \cos { { 18 }^{ o } }  }{ \sin { { 72 }^{ o } }  } $$
             $$\displaystyle =\frac { \sin { { 15 }^{ o } }  }{ \sin { { 15 }^{ o } }  } +\frac { \cos { { 78 }^{ o } }  }{ \cos { { 78 }^{ o } }  } -\frac { \sin { { 72 }^{ o } }  }{ \sin { { 72 }^{ o } }  } $$
             $$\displaystyle =1+1-1=1$$
    Hence, option D is correct.
  • Question 10
    1 / -0
    The value of $$\displaystyle \frac { \cos { { 70 }^{ o } }  }{ \sin { { 20 }^{ o } }  } +\frac { \cos { { 59 }^{ o } }  }{ \sin { { 31 }^{ o } }  } -8{ \sin }^{ 2 }{ 30 }^{ o }$$ is :
    Solution
    The value of $$\displaystyle \frac { \cos { { 70 }^{ o } }  }{ \sin { { 20 }^{ o } }  } +\frac { \cos { { 59 }^{ o } }  }{ \sin { { 31 }^{ o } }  } -8{ \sin }^{ 2 }{ 30 }^{ o }$$ is
    $$\displaystyle =\frac { \cos { \left( { 90 }^{ o }-{ 20 }^{ o } \right)  }  }{ \sin { { 20 }^{ o } }  } +\frac { \cos { \left( { 90 }^{ o }-{ 31 }^{ o } \right)  }  }{ \sin { { 31 }^{ o } }  } -{ 8\left( \frac { 1 }{ 2 }  \right)  }^{ 2 }$$
    $$\displaystyle =\frac { \sin { { 20 }^{ o } }  }{ \sin { { 20 }^{ o } }  } +\frac { \sin { { 31 }^{ o } }  }{ \sin { { 31 }^{ o } }  } -8\times \frac { 1 }{ 4 } $$
    $$\displaystyle =1+1-2=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now