Self Studies

Introduction to Trigonometry Test - 50

Result Self Studies

Introduction to Trigonometry Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sec^2\theta =$$
    Solution
    We know that $$\sin ^2 \theta + \cos ^2 \theta = 1$$

    Dividing both sides by $$\cos ^2 \theta $$, 

    $$ \displaystyle \frac {\sin ^2 \theta}{ \cos ^2 \theta}+ \displaystyle \frac {\cos ^2 \theta}{\cos ^2 \theta} = \frac {1}{ \cos ^2 \theta} $$


    $$ \tan ^2 \theta + 1 = \sec ^2 \theta$$
  • Question 2
    1 / -0
    If $$\displaystyle X=\tan 1^{0}+\tan 2^{0}+........+\tan 45^{0}$$ and $$\displaystyle y= -(\cot 46^{0}+\cot 47^{0}+.......+\cot 89^{0})$$ then find the value of $$(x + y)$$.
    Solution
    Since $$ \tan  (90^o - x) = \cot  90^0 $$ we have
    $$ x + y = \tan 1^o + \tan 2^o +....... + \tan 45^0  - (\cot  46^0 + \cot 47^0 + ... + \cot 89 ^0 ) $$
    $$ =>x+y= \tan 1^o + \tan 2^o +.... + \tan 45^0  - (\cot (90^0 - 44^0) + \cot(90^0-43^0) + .. +\cot (90^0 - 1 ^0 ) $$
    $$ =>x+y= \tan 1^o + \tan 2^o +.... + \tan 45^0  - (\tan 44^0 + \tan43^0 + .. + \tan 1 ^0 ) $$
    $$ => x+y = 0 + 0 + .. + \tan 45^0 = 1 $$
  • Question 3
    1 / -0
    In a right angled triangle, $$\angle A = \theta$$ is an acute angle.
    Then, $$\cos{\theta} \times \sec{\theta}$$ is equal to
    Solution
    $$\cos{\theta} = \dfrac{x}{r}$$ and $$\sec{\theta} = \dfrac{r}{x}$$

    $$\therefore \cos{\theta} \times \sec{\theta} = \dfrac{x}{r} \times \dfrac{r}{x} = 1$$

  • Question 4
    1 / -0
    If $$\displaystyle \cos \Theta _{1}+\cos \Theta _{2}+\cos \Theta _{3}=3,$$ find $$\displaystyle \sin \Theta _{1}+\sin \Theta _{2}+\sin \Theta _{3}.$$
    Solution
    Maximum value of a cosine of an angle is $$ 1 $$


    Hence, when sum of three cosines $$ = 3 $$ , this means each cosine $$ = 1 $$
    And each angle $$ = 0^{o} $$

    So $$ \sin 0  + \sin 0 + \sin 0 = 0 $$
  • Question 5
    1 / -0
    If in a rectangular, the angle between a diagonal and a side is 30$$^o$$ and the length of the diagonal is $$8$$ cm, then the area of the rectangle is _____ .
    Solution
    Referring figure, let ABCD be a rectangular in which $$\angle$$BAC = 30$$^o$$ and AC = 8 cm

    Then, cos30$$^o$$ = $$\displaystyle{\frac{AB}{AC} \Rightarrow \frac{\sqrt3}{2} = \frac{AB}{8} \Rightarrow}$$ AB = 4$$\sqrt3$$ cm 

    and. sin 30$$^o$$ = $$\displaystyle{\frac{BC}{AC} \Rightarrow \frac{1}{2} = \frac{BC}{8} \Rightarrow}$$ BC = 4 cm

    $$\therefore$$ Area of rectangular = AB x BC
    =4$$\sqrt3$$ x 4 
    = 16$$\sqrt3$$ cm$$^2$$ 

    So, option A is correct.
  • Question 6
    1 / -0
    The value of  $$\displaystyle \sin ^{2}5^{\circ}+ \sin ^{2}10^{\circ}+\sin ^{2}15^{\circ}......+\sin ^{2}90^{\circ}$$ is equal to
    Solution
    $$\displaystyle \sin ^{2}5^{\circ}+ \sin ^{2}10^{\circ}+\sin ^{2}15^{\circ}......+\sin ^{2}90^{\circ}$$

    $$=(\sin^25^o+\sin^285^o)+(\sin^210^o+\sin^2{80^o})+...........+(\sin^245^o+\sin^245^o)+\sin^290^o-\sin^245^o$$

    $$=(\sin^25^o+\cos^25^o)+(\sin^210^o+\cos^2{10^o})+...........+(\sin^245^o+\cos^245^o)+\sin^290^o-\sin^245^o$$

    $$ = 1+1+1+.......+1-\dfrac{1}{2}$$

    $$=10-\dfrac{1}{2}=\dfrac{19}{2}$$
  • Question 7
    1 / -0
    If $$\displaystyle 3\cos ^{2}A=\cos 60^{\circ}+\sin ^{2}45^{\circ} $$ then find the value of $$\displaystyle \sec ^{2}A$$.
    Solution
    $$ 3\cos^2 A = \cos 60^0 + \sin^2 45 $$

    $$ \Rightarrow 3\cos^2 A = \dfrac {1}{2} +  (\dfrac {1}{\sqrt {2}})^2 $$

    $$ \Rightarrow 3\cos^2 A = \dfrac {1}{2} +  \dfrac {1}{2} = 1 $$

    $$ \Rightarrow \cos^2 A= \dfrac {1}{3} $$

    Or $$ \sec^2 A = \dfrac {1}{\cos^2 A} = 3 $$
  • Question 8
    1 / -0
    If $$\displaystyle25\sin ^{2}\theta +10\cos ^{2}\theta =15 $$ then find $$\displaystyle\cot  ^{2}\theta $$
    Solution
    $$ 25\sin ^{ 2 }{ \theta  } +10\cos ^{ 2 }{ \theta  } = 15 $$
    $$ \Rightarrow  15\sin ^{ 2 }{ \theta  } + 10\sin ^{ 2 }{ \theta  } + 10\cos ^{ 2 }{ \theta  } = 15 $$
    $$ \Rightarrow  15\sin ^{ 2 }{ \theta  } + 10(\sin ^{ 2 }{ \theta  } + \cos ^{ 2 }{ \theta  } ) = 15 $$ 
    $$ \Rightarrow  15\sin ^{ 2 }{ \theta  } +10 = 15 $$  (Since, $$ \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } = 1 $$)
    $$ \Rightarrow  15\sin ^{ 2 }{ \theta  } = 5 $$
    $$ \Rightarrow  \sin ^{ 2 }{ \theta  } = \dfrac {5}{15} = \dfrac {1}{3} $$

    And, $$ \text{cosec}\, ^{ 2 }{ \theta  } = \dfrac {1}{ \sin ^{ 2 }{ \theta  }} = 3 $$

    Also, $$ \cot ^{ 2 }{ \theta  } =  \text{cosec}\, ^{ 2 }{ \theta  }-1 = 3 - 1 = 2 $$
  • Question 9
    1 / -0
    In a right angled $$\triangle ABD$$, $$\angle B = 60^o$$ and $$\angle A = 30^o$$.
    Then, $$\cos{60^o} = $$

    Solution
    Consider an equilateral $$\triangle ABC$$ with each side $$= 2a$$.

    Each angle of $$\triangle ABC$$ is $$60^o$$.

    From $$A$$, draw $$AD \perp BC$$, then $$BD = DC = a$$.

    Also, $$\angle ADB = 90^o,    \angle BAD = 30^o$$.

    From right angled $$\triangle ADB$$, we have 

    $$AD = \sqrt{{AB}^{2}-{BD}^{2}} = \sqrt{{\left(2a\right)}^{2}-{\left(a\right)}^{2}} $$

           $$= \sqrt{4{a}^{2}-{a}^{2}} = \sqrt{3{a}^{2}} = \sqrt{3}a$$.

    Now, in right angled $$\triangle ADB$$, base $$BD = a,  \,  perpendicular = AD = \sqrt{3}a$$ 

    and hypotenuse$$ = AB = 2a$$

    $$\cos{60^o} = \dfrac{BD}{AB} = \dfrac{a}{2a} = \dfrac{1}{2}$$

    So, $$\dfrac{1}{2}$$ is correct.

  • Question 10
    1 / -0
    In a right angled $$\triangle ABD$$, $$\angle B = 60^o$$ and $$\angle A = 30^o$$, then $$\sin{60^o} =$$

    Solution
    Consider an equilateral triangle with each side $$= 2a$$. 
    So each angle of $$\triangle ABC$$ is $$60^o$$. 
    From $$A$$ draw $$AD \perp BC$$ then $$BD = DC = a$$.
    Also, $$\angle ADB = 90^o$$ and $$\angle BAD = 30^o$$

    From right angled triangle $$\triangle ADB$$, we have
    $$AD = \sqrt{{AB}^{2}-{BD}^{2}} = \sqrt{{\left(2a\right)}^{2}-{\left(a\right)}^{2}}$$
           $$ = \sqrt{4{a}^{2} - {a}^{2}} = \sqrt{3{a}^{2}} = \sqrt{3}a$$

    Now, in right angled $$\triangle ADB$$, base $$BD = a,  AD = \sqrt{3}a$$
    and hypotenuse $$= AB = 2a$$
    $$\sin{60^o} = \dfrac{AD}{AB} = \dfrac{\sqrt{3} \times a}{2 \times a} = \dfrac{\sqrt{3}}{2}$$

    So, $$\dfrac{\sqrt{3}}{2}$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now