Self Studies

Introduction to Trigonometry Test - 55

Result Self Studies

Introduction to Trigonometry Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A$$ and $$B$$ are complementary angles, then $$\sin A \times \sec B =$$
    Solution

    Given that both the angles are complementary i.e., $$A+B=90^{\circ}$$
    So, $$A=90^{\circ}-B$$
    We have : 
    $$=\sin A\times \sec B$$ 
    $$=\sin(90^o-B)\times \sec B$$  
    $$= \cos B\times \sec B$$     [using $$\cos \theta =  \sin (90^o - \theta)$$]
    $$=\cos B \times \dfrac{1}{\cos B}$$
    $$=1$$
  • Question 2
    1 / -0
    $$\cot (90 - \theta) = $$

    Solution
    $$\cot (90 - \theta) = \dfrac {y}{x} = \tan \theta$$

    So, $$\cot (90 - \theta) = \tan \theta$$

    So, $$\tan \theta$$ is correct.
  • Question 3
    1 / -0
    If $$A$$ and $$B$$ are acute angle such that $$\sin A = \cos B$$, then $$(A + B) = .....$$
    Solution
    $$\sin A=\cos B$$

    $$\Rightarrow \sin A=\sin(90^o-B)$$

    $$\Rightarrow A=90^o-B$$

    $$\Rightarrow A+B=90^o$$

    Therefore, Answer is $$90^o$$
  • Question 4
    1 / -0
    If $$\cos 9\alpha = \sin \alpha$$, and $$9\alpha < 90^{\circ}$$, then $$\tan 5\alpha = .....$$
    Solution
    $$\cos 9\alpha = \sin \alpha$$,
    So, $$\cos 9\alpha = \cos (90 - \alpha)\\\therefore 9\alpha = 90 - \alpha\Rightarrow 9\alpha + \alpha = 90^{\circ}\Rightarrow 10\alpha=90^o\Rightarrow \alpha=9^o$$

    Now, $$\tan5\alpha=\tan(5*9^o)=\tan45^o=1$$

    Therefore, Answer is $$1$$
  • Question 5
    1 / -0
    $$\tan (90 - \theta) $$ is equivalent to 
    Solution
    In the figure,
    $$\tan (90^{\circ} - \theta) = \dfrac {x}{y}$$ and $$\cot \theta = \dfrac {x}{y}$$

    So $$\tan (90 - \theta) = \cot \theta$$

    So $$\cot \theta$$ is correct.

  • Question 6
    1 / -0
    $$\cot (90^{\circ} - \theta) $$ is equivalent to
    Solution
    we know
    $$\cos (90 - \theta)= \tan \theta$$

    So, $$\tan \theta$$ is correct.
  • Question 7
    1 / -0
    $$\csc (90 - \theta) = $$ is equivalent to

    Solution
    In the figure,
    $$cosec (90 - \theta) = \dfrac {r}{x}$$ and $$\sec \theta = \dfrac {r}{x}$$

    So, $$cosec (90 - \theta) = \sec \theta$$

    Hence, $$\sec \theta$$ is correct.
  • Question 8
    1 / -0
    $$\sin^{2} 20^{\circ} + \sin^{2} 70^\circ=$$?
    Solution
    $$\sin^{2} 20^{\circ} = \cos^{2} (90^{\circ} - 20^{\circ}) = \cos^{2} 70^\circ$$

    Substituting $$\sin^{2} 20^{\circ} = \cos^{2} 70^\circ$$

    $$\sin^220^o+\sin^270^o=\cos^{2} 70^{\circ} + \sin^{2} 70^{\circ} = 1$$      $$[\because \sin^2\theta+\cos^2\theta=1]$$

  • Question 9
    1 / -0
    Evaluate: $$\dfrac {\tan 35^{\circ}}{\cot 55^{\circ}} + \dfrac {\cot 78^{\circ}}{\tan 12^{\circ}} = $$
    Solution
    Given expression is $$\dfrac { \tan {    { 35^o }  }  }{ \cot {    { 55^o }  }  } +\dfrac { \cot {    { 78^o }  }  }{ \tan {    { 12^o }  }  } $$

    We can rewrite the expression as: 

    $$\dfrac { \tan {    { 35^o }  }  }{ \cot { \left(    { 90^o- }    { 35^o }  \right)  }  } +\dfrac { \cot {    { 78^o }  }  }{ \tan { \left(    { 90^o- }    { 78 }  \right)  }  } $$

    We know that, $$\cot { \left( 90^o-\theta  \right)  } =\tan { \theta  } $$ and  $$\tan { \left( 90^o-\theta  \right)  } =\cot { \theta  } $$

    $$\therefore \ $$ The expression becomes,

    $$\dfrac { \tan {    { 35^o }  }  }{ \tan {    { 35^o }  }  } +\dfrac { \cot {    { 78^o }  }  }{ \cot {    { 78^o }  }  } $$

    $$\Rightarrow 1+1$$

     $$\Rightarrow 2$$

    Hence,  $$\dfrac { \tan {    { 35^o }  }  }{ \cot {    { 55^o }  }  } +\dfrac { \cot {    { 78^o }  }  }{ \tan {    { 12^o }  }  } =2$$
  • Question 10
    1 / -0
    If $$\sin 15^{\circ} = \cos (n\times15^{\circ})$$, then $$n = .....$$
    Solution
    As we know that 
    $$\cos (90^{\circ}-\theta)=\sin \theta$$

    $$\sin 15^{\circ}=\cos (90^{\circ}-15^{\circ})=\cos 75^{\circ}=\cos (5\times 15^{\circ})$$

    So $$n=5$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now