Self Studies

Introduction to Trigonometry Test - 57

Result Self Studies

Introduction to Trigonometry Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ \tan \theta = \dfrac {4}{7}$$, then $$\dfrac {7 \sin \theta - 3\cos \theta}{7\sin \theta + 3\cos \theta} = $$_____
    Solution
    $$\dfrac {7\sin \theta - 3\cos \theta}{7\sin \theta + 3\cos \theta} = \dfrac {7 \tan \theta - 3}{7 \tan \theta + 3} (\because$$ dividing numerator and denominator by $$\cos \theta)$$
    $$= \dfrac {7\times \dfrac {4}{7} - 3}{7 \times \dfrac {4}{7} + 3} = \dfrac {1}{7}$$.
  • Question 2
    1 / -0
    $$\text{cosec } 69^{\circ} + \cot 69^{\circ}$$, when expressed in terms of angles between $$0^{\circ}$$ and $$45^{\circ}$$, becomes
    Solution
    We know that:
    $$\cos A = \sin(90˚-A)$$
    $$\cot A = \tan(90˚-A)$$
    $$\text{cosec } A = \sec(90˚-A)$$

    Using these, we get:
    $$\text{cosec } 69^{\circ} = \text{cosec} (90˚ - 21˚) = \sec 21˚ $$
    $$\cot 69^{\circ} = \cot (90˚ - 21˚) = \tan 21^{\circ}$$

    $$\therefore \text{cosec } 69^{\circ} + \cot 69^{\circ} = \sec 21^{\circ} + \tan 21^{\circ}$$
  • Question 3
    1 / -0
    Evaluate $$: \dfrac {\cot 63˚}{\tan 27˚}$$
    Solution
    We know that 
    $$\tan A = \cot (90˚-A)$$

    $$\dfrac {\cot 63˚}{\tan 27˚} = \dfrac {\tan (90˚ - 63˚)}{\tan 27˚} = \dfrac {\tan 27˚}{\tan 27˚} = 1$$
  • Question 4
    1 / -0
    Without trigonometric table, evaluate $$\dfrac {\sec 41^o}{\text{cosec } 49^o}$$
    Solution
    Given
    $$\dfrac { \sec {    { 41^o }  }  }{ \csc {    { 49^o }  }  } $$
     $$=\dfrac { \sec { \left(    { 90^o- }    { 49^o }  \right)  }  }{ \csc {    { 49^o }  }  } $$
     $$=\dfrac { \csc {    { 49^o }  }  }{ \csc {    { 49^o }  }  } $$ as we know $$\sec { \left( 90^o-\theta  \right)  } =\csc { \theta  } $$
     $$=1$$
    Hence $$1$$ is the answer
  • Question 5
    1 / -0
    $$\sin 84^{\circ} + \sec 84^{\circ}$$ expressed in terms of angles between $$0^{\circ}$$ and $$45^{\circ}$$ becomes
    Solution
    We know that
    $$\sin A = \cos(90˚-A)$$
    $$\tan A = \cot(90˚-A)$$
    $$\sec A = \text{cosec }(90˚-A)$$

    Thus, we get
    $$\sin 84^{\circ} = \cos (90˚ - 84˚)\\ = \cos 6^{\circ}$$

    $$\sec 84^{\circ} = \text{cosec } (90˚ - 84˚) \\=\text{cosec }6^{\circ}$$

    $$\therefore \sin 84^{\circ} + \sec 84^{\circ} = \cos 6^{\circ} + \text{cosec } 6^{\circ}$$.
  • Question 6
    1 / -0
    $$\tan 68^{\circ} + \sec 68^{\circ}$$, when expressed in terms of angles between $$0^{\circ}$$ and $$45^{\circ}$$, becomes
    Solution
    Given trigonometric expression is $$\tan 68^o + \sec 68^o$$

    We know that,
    $$\sin A = \cos(90˚-A)$$
    $$\tan A = \cot(90˚-A)$$
    $$\sec A = \text{cosec }(90˚-A)$$

    Using these, we get:
    $$\tan 68^{\circ} = \tan (90˚-22˚) = \cot 22^{\circ}$$
    $$\sec 68^{\circ} = \text{sec }(90˚ - 22˚) = \text{cosec } 22˚$$

    $$\therefore \ \tan 68^{\circ} + \sec 68^{\circ} = \cot 22^{\circ} + \text{cosec } 22^{\circ}$$.
  • Question 7
    1 / -0
    $$\sin 81^{\circ} + \tan 81^{\circ}$$, when expressed in terms of angles between $$0^{\circ}$$ and $$45^{\circ}$$, becomes
    Solution
    We know that,
    $$\sin A = \cos(90˚-A)$$
    $$\tan A = \cot(90˚-A)$$
    $$\sec A = \text{cosec }(90˚-A)$$

    Using these, we get
    $$\sin 81^{\circ} = \sin (90^{\circ} - 9^{\circ}) = \cos 9^{\circ}$$ 
    $$\tan 81^{\circ} = \tan (90˚ - 9) = \cot 9^{\circ}$$
    $$\therefore \sin 80^{\circ} + \tan 81^{\circ} = \cos 9^{\circ} + \cot 9^{\circ}$$
  • Question 8
    1 / -0
    If $$3\cot \theta = 4$$ then $$\dfrac {5 \sin \theta + 3 \cos \theta}{5 \sin \theta - 3 \cos \theta} = $$_____
    Solution
    We know that, $$cot\ \theta=\dfrac{sin\ \theta}{cos\ \theta}$$

    Given:

    $$\cot \theta = \dfrac {4}{3}$$ 

    Thus, $$\dfrac {5 \sin \theta + 3 \cos \theta}{5\sin \theta - 3 \cos \theta} = \dfrac {5 + 3 \cot \theta}{5 - 3 \cot \theta}$$

    ($$\because$$ dividing the numerator and denominator by $$\sin \theta$$)

                                   $$= \dfrac {5 + 3 \times \dfrac {4}{3}}{5 - 3 \times \dfrac {4}{3}} = 9$$.

    Hence option (D) is coorect
  • Question 9
    1 / -0
    If $$16\cot \theta = 12$$, then $$\dfrac {\sin \theta - \cos \theta}{\sin \theta + \cos \theta} = $$ _____
    Solution
    $$\cot \theta = \dfrac {12}{16} = \dfrac {3}{4}$$ and so $$\tan \theta = \dfrac {4}{3}$$   $$[\because \tan \theta=\dfrac{1}{\cot \theta}]$$

    $$\dfrac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} = \dfrac{\tan\theta -1}{\tan\theta+1}$$ (Dividing both the numerator and denominator by $$\cos\theta$$)

    Putting values, $$\dfrac {\dfrac {4}{3} - 1}{\dfrac {4}{3} + 1} = \dfrac {\dfrac {1}{3}}{\dfrac {7}{3}} = \dfrac {1}{7}$$

    So, $$\dfrac {1}{7}$$ is correct.
  • Question 10
    1 / -0
    Find the name of the person who first produce a table for solving a triangle's length and angles.
    Solution
    $$\text {Hipparchus}$$ gave the first table of chords analogus to modern table of sine values, and used them to solve trigonometric problems
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now