Self Studies

Introduction to Trigonometry Test - 58

Result Self Studies

Introduction to Trigonometry Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    sin$$^{2}\theta$$ + cos$$^{2}\theta$$ = _____
    Solution
    From Pythagoras theorem, we write
    $$a^{2}+b^{2}= c^{2}$$

    Dividing through by $$c^{2}$$ gives,
    $$\dfrac{a^{2}}{c^{2}}+\dfrac{b^{2}}{c^{2}} = \dfrac{c^{2}}{c^{2}}$$

    This can be simplified to: 
    $$\left(\dfrac{a}{c}\right)^{2}+\left(\dfrac{b}{c}\right)^{2} = \left(\dfrac{c}{c}\right)^{2}$$

    Now, $$\dfrac{a}{c}$$ is $$\dfrac{\text{opposite}}{\text{hypotenuse}}$$, which is $$\sin \theta$$

    $$\dfrac{b}{c}$$ is $$\dfrac{\text{adjacent}}{\text{hypotenuse}}$$, which is $$\cos \theta$$

    So, $$\sin^{2}\theta + \cos^{2}\theta = 1$$

    So, option $$A$$ is correct.

  • Question 2
    1 / -0
    The inverse of $$\sin\theta$$ is
    Solution
    inverse of $$\sin\theta\rightarrow \dfrac{1}{\sin\theta}=\text{cosec}\theta$$

    Therefore, Answer is $$\text{cosec}\theta$$
  • Question 3
    1 / -0
    If $$\tan^{2} 45^{\circ} - \cos^{2} 30^{\circ} = x \sin 45^{\circ} \cos 45^{\circ}$$, then $$x = $$
    Solution
    We know, $$\tan 45^{\circ} = 1, \cos 30 = \dfrac {\sqrt {3}}{2}, \sin 45^{\circ} = \dfrac {1}{\sqrt {2}}, \cos 45^{\circ} = \dfrac {1}{\sqrt {2}}$$
    Now, $$ \tan^245^o-\cos^230^o= x \sin 45^0\cos 45^o$$
    $$\Rightarrow  1 - \dfrac {3}{4} = x\times \dfrac {1}{\sqrt {2}} \times \dfrac {1}{\sqrt {2}} = >1 - \dfrac {3}{4} = x \times \dfrac {1}{2}$$
    $$\Rightarrow  \dfrac {1}{4} = \dfrac {x}{2}$$, $$\Rightarrow  x = \dfrac {2}{4} = \dfrac {1}{2}$$

  • Question 4
    1 / -0
    If $$\tan \theta = \dfrac {a}{b}$$, then $$\dfrac {a\sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta} = .....$$
    Solution
    Dividing numerator and denominator by $$\cos \theta$$ we get
    $$\dfrac {(a \sin \theta - b \cos \theta)}{(a \sin \theta + b\cos \theta)} = \dfrac {a\tan \theta - b}{a\tan \theta + b} = \dfrac {a\times \dfrac {a}{b} - b}{a\times \dfrac {a}{b} + b} = \dfrac {a^{2} - b^{2}}{a^{2} + b^{2}}$$
  • Question 5
    1 / -0
    $$\dfrac {\cos (90 -\theta) \sec (90 - \theta)\tan \theta}{\text{cosec } (90 - \theta)\sin (90 - \theta) \cot (90 - \theta)} + \dfrac {\tan (90 - \theta)}{\cot \theta} = ......$$
    Solution
    As we know that,
    $$\sin(90^{o}-\theta)=\cos \theta$$, $$\cos(90^o-\theta)=\sin \theta$$,
    $$\text{cosec}(90^o-\theta)=\sec \theta$$, $$\cot(90^o-\theta)=\tan\theta$$,
    $$\sec(90^o - \theta)=\text{cosec} \theta$$, $$\tan(90^o - \theta) = \cot \theta$$

    $$\therefore\ \dfrac{\cos(90-\theta) \sec(90-\theta) \tan \theta}{\text{cosec}(90-\theta) \sin(90-\theta) \cot(90-\theta)} + \dfrac{\tan(90-\theta)}{\cot \theta}$$

    $$\therefore\ \dfrac{\sin \theta \times \frac{1}{\cos(90-\theta)} \times \tan \theta}{\frac{1}{\sin(90-\theta)} \times \sin(90-\theta) \times \tan \theta} + \dfrac{\cot \theta}{\cot \theta}$$

    $$=\dfrac{\sin \theta \times \frac{1}{\sin \theta}}{\frac{1}{\cos \theta} \times \cos \theta} + 1$$ 

    $$=1+1=2$$
    Hence, option C is correct.
     
  • Question 6
    1 / -0
    $$\dfrac {1 + \tan^{2}A}{1 + \cot^{2}A} = $$ _____
    Solution
    $$\boxed{\sin^{2}A + \cos^{2}A = 1}$$


    $$\dfrac {1 + \tan^{2}A}{1 + \cot^{2}A} \\= \dfrac {1 + \dfrac {\sin^{2}A}{\cos^{2}A}}{1 + \dfrac {\cot^{2}A}{\sin^{2}A}} \\= \dfrac {\dfrac {\sin^{2}A + \cos^{2}A}{\cos^{2}A}}{\dfrac {\sin^{2}A + \cos^{2}A}{\sin^{2}A}}$$    
    $$=\dfrac {\dfrac {1}{\cos^{2}A}}{\dfrac {1}{\sin^{2}A}} \\= \dfrac {\sin^{2}A}{\cos^{2}A} \\= \tan^{2}A$$
    So, $$\tan^{2}A$$ is correct.
  • Question 7
    1 / -0
    If $$A + B = 90^o$$, then ......
    Solution
    $$\sec A = \dfrac {r}{x}$$ and $$\text{cosec } A = \dfrac {r}{x}$$

    So, $$\sec A = \text{ cosec } A$$

  • Question 8
    1 / -0
    The value of $$\cot 1^{\circ} \cot 2^{\circ} .... \cot 89^{\circ}$$ is .....
    Solution
    The given equation can be written as
    $$(\cot 1^{\circ} \cot 89^{\circ})(\cot 2^{\circ} \cot 88^{\circ}) ..... (\cot 44^{\circ} \cot 46^{\circ}) \cot 45^{\circ}$$

    $$= (\cot 1^{\circ} \cot (90^{\circ} - 1^{\circ})) (\cot 2^{\circ} \cot (90^{\circ} - 2^{\circ})) ..... (\cot 44^{\circ} \cot (90^{\circ} - 44^{\circ}) ) \cot 45^{\circ}$$

    $$= \cot 1^{\circ} \tan 1^{\circ} \cdot \cot 2^{\circ} \tan 2^{\circ} .... \cot 44^{\circ} \tan 44^{\circ} \times \cot 45^{\circ}$$   (Since $$\cot (90^{\circ}-x) = \tan x)$$)
      
    $$= 1\times 1 ..... 1\times 1 $$   (Since $$ \cot x \times \tan x = 1, \cot 45^{\circ}$$)

    $$=1$$

    Hence, option $$A$$ is correct.
  • Question 9
    1 / -0
    If $$\cot\theta = \dfrac{6}{8}$$ and $$\theta$$ is acute, what is the value of $$\text{cosec}\,\theta$$?
    Solution
    First use the identity: $$1 + \cot^{2}\theta = \text{cosec}\,^{2}\theta$$ 
    and substitute the value of $$\cot\theta = \dfrac{6}{8}$$

    Therefore, $$1+ \left(\dfrac{6}{8}\right)^{2} = \text{cosec}\,^{2}\theta$$ 

    $$1 + \sqrt{\dfrac{36}{64}} = \text{cosec}\,^{2}\theta$$ 

    $$\text{cosec}\,\theta = \sqrt{\dfrac{100}{64}}$$

    Squaring on both the sides, we get
    $$\text{cosec}\,\theta = \dfrac{10}{8}$$
  • Question 10
    1 / -0
    If $$\tan\theta$$ = $$\dfrac{6}{8}$$ and $$\theta$$ is acute, what is the value of $$\cos\theta$$?
    Solution
    First use the identity: $$1 + \tan^{2}\theta = \sec^{2}\theta$$ 
    and substitute the value of $$\tan\theta = \dfrac{6}{8}$$

    Therefore, $$1+ \left(\dfrac{6}{8}\right)^{2}= \sec^{2}\theta$$ 

    $$1 + \sqrt{\dfrac{36}{64}} = \sec^{2}\theta$$ 

    $$\sec \theta = \sqrt{\dfrac{100}{64}}$$

    Taking square roots on both the sides, we get
    $$\sec\theta = \dfrac{10}{8}$$

    Now we know the value of $$\sec \theta$$, to find $$\cos \theta$$ we just take the reciprocal.

    Therefore, $$\cos \theta = \dfrac{8}{10}$$

    So, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now