Self Studies

Introduction to Trigonometry Test - 60

Result Self Studies

Introduction to Trigonometry Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Choose the correct option and justify your choice:
    $$\displaystyle \sin { 2A } =2\sin { A } $$ is true when $$A =$$
    Solution
    $$\sin 2A = 2\sin A$$    ....given

    $$2\sin A \cos A=2\sin A$$    ($$\because \sin 2A =2\sin A \cos A$$)

    $$2\sin A \cos A-2 \sin A=0$$

    $$2\sin A (\cos A-1)=0$$

    Either $$\sin A=0$$ or $$\cos A -1=0$$
    $$A=0^\circ$$    or $$\cos A=1\implies A=0^\circ$$

    Hence, option A is correct.
  • Question 2
    1 / -0
    Choose the correct option. Justify your choice.
    $$\displaystyle \frac { 1+{ \tan }^{ 2 }A }{ 1+{ \cot }^{ 2 }A } =$$
    Solution
    The value of $$\dfrac {1+\tan ^2A}{1+\cot ^2A}$$

    $$=\dfrac{1+\dfrac{\sin^2A}{\cos^2A}}{1+\dfrac{\cos^2A}{\sin^2A}}$$

    $$=\dfrac{\cos^2A\,+\sin^2A}{\sin^2A+\cos^2 A}\times \dfrac{\sin^2A}{\cos^2A}$$

    $$=\tan^2A$$
  • Question 3
    1 / -0
    Choose the correct option and justify your choice:
    $$\displaystyle \frac { 1-{ \tan }^{ 2 }{ 45 }^{ \circ  } }{ 1+{ \tan }^{ 2 }{ 45 }^{ \circ  } } =$$
    Solution
    The value of $$\dfrac {1- \tan ^2 45^o}{1+ \tan ^2 45^o}$$
    $$=\displaystyle \frac{1-(1)^2}{1-(1)^2}$$
    $$=\displaystyle \frac{1-1}{1+1}=\frac{0}{2}=0$$
  • Question 4
    1 / -0
    Choose the correct option and justify your choice:
    $$\displaystyle \frac { 2\tan { { 30 }^{ \circ  } }  }{ 1+{ \tan }^{ 2 }{ 30 }^{ \circ  } } =$$
    Solution
    Given trigonometric expression is $$\displaystyle \dfrac { 2\tan { { 30 }^{ \circ  } }  }{ 1+{ \tan }^{ 2 }{ 30 }^{ \circ  } }$$

    We know that, $$\tan30^\circ=\dfrac{1}{\sqrt3}$$

    $$\therefore \ \displaystyle \frac { 2\tan { { 30 }^{ \circ  } }  }{ 1+{ \tan }^{ 2 }{ 30 }^{ \circ  } } $$

    $$= \displaystyle \frac{2\left(\dfrac{1}{\sqrt{3}}\right)}{1+\left(\dfrac{1}{\sqrt{3}}\right)^2}$$

    $$=\dfrac{\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{3}}$$

    $$=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{4}{3}}$$

    $$=\dfrac{6}{4\sqrt{3}}$$

    $$=\dfrac{\sqrt{3}}{2}$$

    We know that,  $$\sin 60^\circ=\dfrac{\sqrt3}{2}$$

    $$\therefore \ \displaystyle \dfrac { 2\tan { { 30 }^{ \circ  } }  }{ 1+{ \tan }^{ 2 }{ 30 }^{ \circ  } }=\sin60^\circ$$

    Hence, option A is correct.
  • Question 5
    1 / -0
    If $$\sin \theta \, + \, \cos \theta \, = \, p, \, \sin^{3} \, \theta \, + \, \cos^{3} \, \theta \, = \, q$$, then $$ p(p^{2} \, - \, 3) \, = \, $$  
    Solution
    Given, $$\sin\theta+\cos\theta=p$$, $$\sin^3\theta+\cos^3\theta=q$$

    We know $$a^3+b^3=(a+b)(a^2+b^2-ab)$$

    Therefore, $$\sin^3\theta+\cos^3\theta=(\sin\theta+\cos\theta)(\sin^2\theta+\cos^2\theta-\sin\theta\,\cos\theta)$$

    $$q=p(1-\sin\theta\cos\theta)$$

    $$\dfrac qp=1-\sin \theta \cos \theta$$

    $$\because \sin\theta+\cos\theta=p$$

    $$1+2\sin\theta\cos\theta=p^2$$

    $$2\sin\theta\cos\theta=p^2-1$$

    $$\sin\theta\cos\theta=\dfrac{p^2-1}{2}$$

    $$\Rightarrow \dfrac qp=\left[1-\dfrac{(p^2-1)}{2}\right]$$

    $$\Rightarrow 2q=p(2-p^2+1)$$

    $$\Rightarrow 2q=p(3-p^2)$$ 

    $$\Rightarrow p(p^2-3)=-2q$$
  • Question 6
    1 / -0
    If the area of $${\Delta}$$ $$ABC$$ is $$8\sqrt{3}$$ sq. units, then the length of $${AB}$$ is

    Solution
    Let the length of $$AB$$ be $$x$$.
    Correspondingly, lengths of $$AC$$ and $$BC$$ would be $$x \sin(60^o)$$ and $$x \cos(60^o)$$ respectively.
    i.e. $$AC = \cfrac{x\sqrt{3}}{2}$$ and $$AB = \cfrac{x}{2}$$
    The area of the triangle $$=\dfrac{1}{2} \times AC \times BC$$
    $$ 8 \sqrt {3}= \dfrac{(\frac{x\sqrt{3}}{2}) \times (\frac{x}{2})}{2}$$

    $$8 \sqrt 3= \dfrac{\sqrt{3} x^2}{8}$$
    Since the area is given to be $$8\sqrt{3}$$, we get 
    $$x^2 = 64$$
    $$\therefore x=8$$
  • Question 7
    1 / -0
    $$\tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ} $$ is equal to
    Solution
    $$\textbf{Step-1: Apply complementary angles of trigonometric function.}$$
                    $$\text{We have,}$$
                    $$\tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}$$
                    $$\text{We know that}$$ $$\tan(90-\theta)=\cot\theta$$
                    $$= \tan 10^{\circ} . \tan 20^{\circ} . \tan 30^{\circ} . \tan 40^{\circ}. \cot 40^{\circ} . \cot 30^{\circ} . \cot 20^{\circ} . \cot 10^{\circ} $$
                    $$= 1\times1\times1\times1$$ 
     $$[\because$$ $$\boldsymbol{\mathbf{\tan (90^o-\theta)=\cot\theta}}$$ $$\textbf{and}$$ $$\boldsymbol{\mathbf{\tan\theta\cot \theta=1]}}$$
                    $$=1$$
    $$\textbf{Hence, option - D is correct option}$$
  • Question 8
    1 / -0
    If $$\displaystyle \sin { x } +{ \sin }^{ 2 }x=1$$, then $$\displaystyle { \cos }^{ 12 }x+3{ \cos }^{ 10 }x+3{ \cos }^{ 8 }x+{ \cos }^{ 6 }x$$ is equal to:
    Solution
    We have $$\sin x+\sin^2x=1\Rightarrow \sin x=1-\sin^2x=\cos^2x$$

    $$\therefore \cos^{12}x+3\cos^{10}x+3\cos^8x+\cos^6x$$
    $$=\sin^6x+3\sin^5x+3\sin^4x+\sin^3x$$    .........  $$[\because\sin x = \cos ^2 x]$$
    $$=\sin^3x(\sin^3x+3\sin^2x+3\sin x+1)$$
    $$=\sin^3x(\sin x+1)^3$$
    $$=(\sin x+\sin^2x)^3=1$$
  • Question 9
    1 / -0
    Simplify $$\sin^3\theta +\sin\theta -\sin\theta \cos^2\theta $$.
    Solution
    $${ \sin }^{ 3 }\theta + \sin\theta- \sin\theta { \cos }^{ 2 }\theta $$ 
    $$= { \sin }^{ 3 }\theta  + \sin\theta (1-{ \cos }^{ 2 }\theta )$$
    $$ = { \sin }^{ 3 }\theta + \sin\theta \times { \sin }^{ 2 }\theta  $$
    $$= 2{ \sin }^{ 3 }\theta$$
  • Question 10
    1 / -0
    Calculate the value of $$\sqrt {\dfrac {9\sin^{2} \theta + 9\cos^{2} \theta}{4}} $$.
    Solution
    Trigonometric identity $$:{\sin}^2\theta +{\cos}^2\theta =1$$

    $$\sqrt{\dfrac {9{\sin}^2\theta +9{\cos}^2\theta} {4}}= \sqrt { \dfrac { 9{ (\sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta ) }{ 4 }  } $$
                                       $$ = \sqrt { \dfrac { 9\times 1 }{ 4 }  } $$
                                       $$=\dfrac { 3 }{ 2 } $$
                                       $$=1.5$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now