Self Studies

Introduction to Trigonometry Test - 62

Result Self Studies

Introduction to Trigonometry Test - 62
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In $$\triangle ABC$$, $$\angle B= {90}^{\circ}$$, $$\sin{C} = \dfrac{3}{5}$$, then $$\cos{A} =$$ ______
    Solution
    In a right angled triangle, $$A+B+C=180^\circ$$
    $$B=90^\circ$$
    So, $$A+C=90^\circ$$
    $$A=90^\circ-C$$
    $$\cos A=\cos(90^\circ-A)$$
    $$\Rightarrow \cos A=\sin C=\dfrac35$$
    $$\Rightarrow \cos A=\cfrac35$$
  • Question 2
    1 / -0
    In the following figure $$AB \perp BC$$ and $$\angle ACB = 30^\circ$$, given $$BC = \sqrt{300}\ m$$. The length of $$AB$$ is

    Solution
    Given that:
    From the fig; $$AB\bot BC,\angle ACB=30^\circ, BC=\sqrt300 m$$
    To find:
    $$AB=?$$
    Solution:
    In $$\triangle ABC,$$
    $$\tan\angle ACB=\cfrac{AB}{BC}$$
    or, $$\tan30^\circ=\cfrac{AB}{BC}$$
    or, $$AB=\tan30^\circ\times BC$$
    or, $$AB=\cfrac{1}{\sqrt3}\times \sqrt{300}m$$
    or, $$AB=\cfrac{1}{\sqrt3}\times 10\sqrt{3}m$$
    or, $$AB=10m$$
    Therefore, A is the correct option.
  • Question 3
    1 / -0
    If $$\sin \theta = \dfrac {3}{5}$$, then the value of $$\text{cosec}\, \theta$$ is
    Solution
    Given $$\sin \ \theta=\dfrac{3}{5}$$
    We know that $$\text{cosec}\, \theta=\dfrac{1}{\sin \ \theta}=\dfrac{1}{\dfrac{3}{5}}$$
    $$\therefore$$ $$\text{cosec}\,  \theta=\dfrac{5}{3}$$
  • Question 4
    1 / -0
    The value of $$2\sin 30^{\circ} \cos 30^{\circ}$$ is equal to
    Solution
    $$2\sin { 30° } \cos { 30° }$$

    $$=2\times \dfrac { 1 }{ 2 } \times \dfrac { \sqrt { 3 }  }{ 2 }$$

    $$=\dfrac { \sqrt { 3 }  }{ 2 } $$

    $$=\sin { 60° } $$

    Hence, the answer is $$\sin { 60° }. $$
  • Question 5
    1 / -0
    The value of $$\dfrac {\sin 27^{\circ}}{\cos 63^{\circ}}$$ is
    Solution
    $$\dfrac { \sin { 27° }  }{ \cos { 63° }  }$$
    $$=\dfrac { \sin { \left( 90°-63° \right)  }  }{ \cos { 63° }  } $$
    $$=\dfrac { \cos { 63° }  }{ \cos { 63° }  }$$
    $$=1$$
    Hence, the answer is $$1.$$
  • Question 6
    1 / -0
    The value of $$cosec^{2} 60^{\circ} - 1$$ is equal to
  • Question 7
    1 / -0
    If $$x = \dfrac {2\tan 30^{\circ}}{1 - \tan^{2} 30^{\circ}}$$, then the value of $$x$$ is:
    Solution
    $$x=\dfrac { 2\tan { 30° }  }{ 1-\tan ^{ 2 }{ 30° }  } =\dfrac { 2\times \dfrac { 1 }{ \sqrt { 3 }  }  }{ 1-{ \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  }^{ 2 } } =\dfrac { \dfrac { 2 }{ \sqrt { 3 }  }  }{ 1-\dfrac { 1 }{ 3 }  } $$
    $$\Rightarrow x=\dfrac { 2 }{ \sqrt { 3 }  } \times \dfrac { 3 }{ 2 } =\sqrt { 3 } =\tan { 60° } $$
    $$\Rightarrow x=\tan { 60° } .$$
    Hence, the answer is $$\tan { 60° } .$$
  • Question 8
    1 / -0
    If $$\cos x = \sin 43^{\circ}$$, then the value of $$x$$ is
    Solution
    $$\cos { x } =\sin { 43° } $$
    $$\Rightarrow \cos { x } =\sin { \left( 90°-47° \right)  } $$
    $$\Rightarrow \cos { x } =\cos { 47° } $$
    $$\Rightarrow x=47°$$
    Hence, the answer is $$47°.$$
  • Question 9
    1 / -0
    The value of $$\sin^{2} 60^{\circ} + \cos^{2} 60^{\circ}$$ is equal to
    Solution
    $$\sin ^{ 2 }{ 60° } +\cos ^{ 2 }{ 60° } ={ \left( \dfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }+{ \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 }$$
    $$\Rightarrow \dfrac { 3 }{ 4 } +\dfrac { 1 }{ 4 } =\dfrac { 4 }{ 4 } =1$$


  • Question 10
    1 / -0
    If $$sin^2 (3x + 45) + cos^2 (2x + 60) = 1$$ then $$x =$$ ...............
    Solution
    $$sin^2 (3x + 45)+ cos^2 (2x + 60) = 1$$
    $$\therefore sin^2 (3x + 45) = 1 - cos^2 (2x + 60)$$
    $$\therefore sin^2 (3x + 45) = sin^2 (2x + 60)$$ ............. [since $$1 - cos^2 \theta = sin^2 \theta$$]
    $$\therefore 3x + 45 = 2x + 60$$
    $$\therefore x = 15$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now