Self Studies

Introduction to Trigonometry Test - 63

Result Self Studies

Introduction to Trigonometry Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following pair is a correct trignometric inter-relationship?
    (1) $$\cos { \theta  } $$(a) $$\cfrac { 1 }{ \tan { \theta  }  } $$
    (2) $$\tan { \theta  } $$(b) $$\cfrac { 1 }{ co\sec { \theta  }  } $$
    (3) $$\cot { \theta  } $$(c) $$\cfrac { 1 }{ \sec { \theta  }  } $$
    (4) $$\sin { \theta  } $$(d) $$\cfrac { 1 }{ \cot { \theta  }  } $$

    Solution
    We can write $$\cos \theta$$ as $$\dfrac{1}{\dfrac{1}{\cos \theta}}=\dfrac{1}{\sec \theta}$$

    $$\therefore \cos \theta=\dfrac{1}{\sec \theta}$$ .......... $$(1)$$

    Now, $$\tan \theta=\dfrac{\sin \theta}{\cos \theta}=\dfrac{1}{\dfrac{\cos \theta}{\sin \theta}}=\dfrac{1}{\cot \theta}$$

    $$\therefore \tan \theta=\dfrac{1}{\cot \theta}$$ ........ $$(2)$$

    $$\cot{\theta} =\cfrac{1}{\tan{\theta}}$$ ............ $$(3)$$

    $$\sin { \theta  } =\dfrac{1}{\dfrac{1}{\sin \theta}}=\dfrac{1}{\text{cosec}{\theta}}$$ ...... $$(4)$$

    Hence, the correct answer is $$1-c,2-d,3-a,4-b$$
  • Question 2
    1 / -0
    If $$\sin { 7\theta  } =\cos { 2\theta  } $$ for acute angles $$7\theta$$ and $$2\theta$$, then $$\theta =$$
    Solution
    Given : $$\sin { 7\theta  } =\cos { 2\theta  } $$
    $$\implies \sin { 7\theta  } =\sin { (90^o-2\theta ) } $$
    $$\implies 7\theta =90^o-2\theta $$
    $$\implies 9\theta =90^o$$
    $$\implies \theta =10^o$$
    Hence, the answer is $$10^o$$.
  • Question 3
    1 / -0
    The value of $$\tan 26^{\circ}\tan 64^{\circ}$$ is
    Solution
    $$\tan { 26° } \tan { 64° } =\tan { \left( 90°-64° \right)  } \tan { 64° } $$
                                 $$=\cot { 64° } \tan { 64° } $$$$(\because \tan (90-x) =\cot x)$$
                                 $$=1.$$$$(\because\tan x\cdot \cot x=1 )$$
    Hence,  $$\tan { 26° } \tan { 64° }  =1.$$
  • Question 4
    1 / -0
    The value of $$\sec 29^{\circ} - \text{cosec } 61^{\circ}$$
    Solution
    $$\sec { 29° } -\text{cosec}\;61°$$
    $$=\sec { \left( 90°-61° \right)  } -\text{cosec}\;61°$$
    $$=\text{cosec}\;61°-\text{cosec}\;61°$$
    $$=0$$
    Hence, the answer is $$0.$$
  • Question 5
    1 / -0
    If $$\tan \theta + \cot \theta = 2$$, then the value of $$\tan^{2}\theta + \cot^{2}\theta$$ is  ____________.
    Solution
    We know $$tan\theta=\dfrac{1}{cot\theta}$$,

    So, $$(tan\theta+cot\theta)^{2}=tan^{2}\theta+cot^{2}\theta+2$$

    $$\Rightarrow (2)^{2}=tan^{2}\theta+cot^{2}\theta+2$$

    $$\Rightarrow tan^{2}\theta+cot^{2}\theta=2^{2}-2$$

    $$\Rightarrow tan^{2}\theta+cot^{2}\theta=2$$

    So, Option (B)
  • Question 6
    1 / -0
    If $$3x \csc 36^{\circ} = \sec 54^{\circ}$$, then the value of $$x$$ is
    Solution
    Given, 
    $$3x\csc\;36°=\sec { 54° } $$
    $$\Rightarrow 3x\csc\left( 90°-54° \right) =\sec { 54° } $$
    $$\Rightarrow 3x\sec { 54° } =\sec { 54° } $$
    $$\Rightarrow 3x=1$$
    $$\Rightarrow x=\dfrac { 1 }{ 3 } $$
    Hence, the answer is $$\dfrac { 1 }{ 3 }$$
  • Question 7
    1 / -0
    If $$4\tan \theta = 3$$, then $$\dfrac {5\sin \theta + 3\cos \theta}{5\sin \theta - 3\cos \theta} = $$
    Solution
    $$4\tan \theta = 3$$
    $$\tan \theta = \dfrac {3}{4}$$. So, $$\sin \theta/cos \theta = \dfrac {3}{4}$$ 

    Hence, $$\dfrac {5\left (\dfrac {sin \theta}{cos \theta}\right ) + 3}{5\left (\dfrac {sin \theta}{cos \theta}\right ) - 3} $$.
    $$\dfrac {5\left (\dfrac {3}{4}\right ) + 3}{5\left (\dfrac {3}{4}\right ) - 3} $$.
    $$=9$$
  • Question 8
    1 / -0
    If $$ cos\, 25^0 +sin \, 25^0=k$$, then $$cos\, 20^0$$ is equal to 
    Solution
    $$\cos 25^{\circ}+\sin 25^{\circ}=k$$
    $$\dfrac{1}{\sqrt{2}}\cos 25^{\circ}+\dfrac{1}{\sqrt{2}}\sin 25^{\circ}=\dfrac{k}{\sqrt{2}}$$
    $$\sin (45^{\circ}+25^{\circ})=\dfrac{k}{\sqrt{2}}$$
    $$\sin 70^{\circ}=\dfrac{k}{\sqrt{2}}$$
    $$\sin (90^{\circ}-20^{\circ})=\dfrac{k}{\sqrt{2}}$$
    $$\cos 20^{\circ}=\dfrac{k}{\sqrt{2}}$$
  • Question 9
    1 / -0
    Choose the correct answers from the alternatives given.
    If $$0^{\circ} \leq  A \leq  90^{\circ}$$. the simplified form of the given expression $$\sin A  \cos A (\tan A- \cot A)$$ is
    Solution
    $$\sin A\cos A(\tan A-\cot A)=\sin A\cos A\bigg(\dfrac{\sin A}{\cos A}-\dfrac{\cos A}{\sin A}\bigg)$$
                                                     $$=\sin A\cos A\times \dfrac{\sin A}{\cos A}-\sin A\cos A\times \dfrac{\cos A}{\sin A}$$
                                                     $$=\sin^2 A-\cos ^2 A$$
                                                     $$=\sin^2 A-(1-\sin^2 A)$$
                                                     $$=2\sin^2 A-1$$
  • Question 10
    1 / -0
    Evaluate: $$\displaystyle\frac{-\tan\theta \cot(90^o-\theta)+\sec\theta cosec(90^o-\theta)+\sin^235^o+\sin^255^o}{\tan 10^o\tan 20^o\tan 30^o \tan 70^o \tan 80^o}$$.
    Solution
    as we know $$ cot(90^0 $$ $$-$$ $$ \theta $$ $$ ) $$ $$ =$$ $$ tan $$ $$ \theta $$ and  $$ cosec(90^0 $$ $$-$$ $$ \theta $$ $$ ) $$ $$ =$$ $$ sec $$ $$ \theta $$ 
    Numerator $$ sec ^2 $$ $$ \theta$$ $$ -$$ $$ tan ^ 2 $$ $$ \theta $$ $$ =1$$ and $$ sin  55^0 =$$  $$ cos 35^0$$ 
    So using the above mentioned identity the numerator outcome is $$ 2 $$ and the denominator $$ tan 80^0 = $$ $$ cot 10^0 $$ and $$ tan 10^0 * cot 10^0 = 1$$  similarly for $$ tan 20^0 cot 20^0 = 1$$
    so denominator is $$ tan30^0 = 1 / $$ $$ \sqrt{3} $$ 
    Hence answer is $$ 2* $$ $$ \sqrt{3} $$ 
    Hence option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now