Self Studies

Introduction to Trigonometry Test - 64

Result Self Studies

Introduction to Trigonometry Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\sec x=p+\dfrac 1{4p}$$, then $$\sec x+\tan x$$
    Solution
    Given 

    $$ \sec x =p+\dfrac 1{4p}$$ 

    $$ \sec ^2 x =p^2 +\dfrac 1{16p^2} +2(p)\left(\dfrac 1{4p}\right)$$

    $$ 1+\tan ^2 x =p^2 +\dfrac 1{16p^2} +\dfrac 12 $$

    $$ \tan ^2 x =p^2 +\dfrac 1{16p^2} +\dfrac 12 -1$$

    $$ \tan ^2 x =p^2 +\dfrac 1{16p^2} -\dfrac 12$$

    $$ \tan ^2 x =p^2 +\dfrac 1{16p^2} -2(p)\left(\dfrac 1{4p}\right)$$

    $$ \tan ^2 x =\left(p-\dfrac 1{4p}\right)^2$$

    $$ \tan x = \pm \left(p-\dfrac 1{4p}\right)$$

    $$ \sec x+\tan x $$ 

    $$ \implies p+\dfrac 1{4p}  \pm \left(p-\dfrac 1{4p}\right)$$

    $$ \implies 2p (or) \dfrac 1{2p}$$
  • Question 2
    1 / -0
    $$\sin 30^{o}- cos60^{o}$$= ?
    Solution
    $$\sin{ 30 }^{ o  }=\dfrac { 1 }{ 2 } $$  

    $$\cos { 60 }^{ o  }=\dfrac { 1 }{ 2 } $$

    $$\sin{30 }^{ o  }-\cos { 60 }^{ o  }=\dfrac { 1 }{ 2 } -\dfrac { 1 }{ 2 } =0$$
  • Question 3
    1 / -0
    In the given figure, $$\angle PAB = 60^o $$ and $$ \angle CAB = 30^o $$ and $$PB = 75m.$$ Find $$BC.$$

  • Question 4
    1 / -0
    Solve $$\sin A(1+\tan A)+\cos A(1+\cot A)$$.
    Solution
    $$sinA(1+tanA)+cosA(1+cotA) $$

    $$ \Rightarrow sinA\left( { 1+\dfrac { { \sin  A } }{ { \cos  A } }  } \right) +cosA\left( { 1+\dfrac { { \cos  A } }{ { \sin  A } }  } \right)  $$

    $$ \Rightarrow \dfrac { { \sin  A } }{ { \cos  A } } \left( { \sin  A+\cos  A } \right) +\dfrac { { \cos  A } }{ { \sin  A } } \left( { \sin  A+\cos  A } \right)  $$

    $$ \Rightarrow \left( { \sin  A+\cos  A } \right) \left[ { \dfrac { { { { \sin   }^{ 2 } }A+{ { \cos   }^{ 2 } }A } }{ { \sin  A\cdot \cos  A } }  } \right]  \\$$

    $$ \Rightarrow \dfrac { { \sin  A } }{ { \sin  A\cdot \cos  A } } +\dfrac { { \cos  A } }{ { \sin  A\cdot \cos  A } }  \\$$

    $$ \Rightarrow \sec  A+ cosec \, A \\  $$
  • Question 5
    1 / -0
    If $$\tan A+\cot A=4,\ then\ {\tan}^{4}\ A+{\cot}^{4}\ A$$ is equal to 
    Solution
    $$tan A+ cot A=4$$

    (squaring both sides)

    $$(tan A+ cot A)^{2}= 4^{2}$$

    $$\Rightarrow tan^{2}A+cot^{2}A+ 2 (tan A) (cot A)= 16$$

    $$\Rightarrow tan^{2}A+ cot^{2}A+2=16$$

    $$\Rightarrow tan^{2}A+ cot^{2}A= 16-2$$

    $$\Rightarrow tan^{2}A+cot^{2}A=14$$

    (on squaring both sides)

    $$\Rightarrow (tan^{2}A- cot^{2}A)^{2}= (14)^{2}$$

    $$tan^{4}A+ cot^{4}A+2(tan^{2}A)(cot^{2}A)= 196$$

    $$tan^{2}A+ cot^{4}A= 196-2$$

    $$= 194$$

    Option D is correct
  • Question 6
    1 / -0
    If $$x\sin \,{45^ \circ }{\cos ^2}{60^ \circ } = \dfrac{{{{\tan }^2}{{60}^ \circ }\cos ec{{30}^ \circ }}}{{\sec {{45}^ \circ }{{\cot }^2}{{30}^ \circ }}}$$ then x =
  • Question 7
    1 / -0
    If $$x = a \cos \theta \text { and } y = b \sin \theta$$, then $$b ^ { 2 } x ^ { 2 } + a ^ { 2 } y ^ { 2 }$$ is equal to 
    Solution
    $$x = a\cos \theta; y = b\sin \theta$$

    $$\cos \theta = \dfrac {x}{a}; \sin \theta = \dfrac {y}{b}$$

    $$\cos^{2}\theta + \sin^{2}\theta = 1 = \dfrac {x^{2}}{a^{2}} + \dfrac {y^{2}}{b^{2}}$$

    $$x^{2}b^{2} + a^{2}y^{2} = a^{2}b^{2}$$.
  • Question 8
    1 / -0
    If $$\cos 9\theta=\sin \dfrac{\pi}{4}$$, then the value of $$\tan 6\theta$$ is
    Solution

    We have,

    $$\cos 9\theta=\sin \dfrac{\pi}{4}$$

    $$ \cos 9\theta =\cos \left( {{90}^{o}}-45^0 \right) $$

    $$ 9\theta =45^0  $$

    $$ 10\theta ={45}^{o} $$

    $$ \theta =5^0$$


    Value of $$\tan 6\theta $$

    $$ =\tan 6\theta  $$

    $$ =\tan 6\times {{5}^{o}} $$

    $$ =\tan {{30}^{o}} $$

    $$=\dfrac{1}{\sqrt 3}$$


    Hence, this is the answer.

  • Question 9
    1 / -0
    If $$\tan { x } =3\cot { x } ,$$ then x =?
    Solution
    $$\tan x = 3 \cot x$$
    $$\tan x = 3 \times 1/ \tan x . (\cot x = t/tanx)$$
    $$\tan^2 x = 3$$
    $$\tan x = \sqrt{3}$$
    So the value of x will be $$60^o$$ because the value of $$\tan \, 60$$ is $$\sqrt{3}$$
  • Question 10
    1 / -0
    $$\cos 35 ^ { \circ } + \cos 85 ^ { \circ } + \cos 155 ^ { \circ }$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now