$$a\sec\theta +b\tan\theta =1$$ ............ $$(1)$$
Squaring both the sides we get
$$a^{2} \sec^{2}\theta + b^{2}\tan^{2}\theta + 2ab\sec\theta \tan\theta = 1$$ ..... $$(2)$$
$$a^{2}\sec^{2}\theta - b^{2}\tan^{2}\theta = 5$$ ....... $$(3)$$
Adding equations $$(2)$$ and $$(3)$$ we get,
$$2a^{2}\sec^{2}\theta + 2ab\sec\theta \tan\theta =6$$
$$a^{2}\sec^{2}\theta +ab\sec\theta \tan\theta = 3 $$
$$a\sec\theta \left(a\sec\theta + b\tan\theta \right) = 3$$
$$a\sec\theta = 3$$ .......... (Using eqn $$(1)$$)
$$\implies a=3\cos\theta$$ .......... $$\left(\because \cos\theta = \dfrac{1}{\sec\theta}\right)$$
Substitute $$a$$ in $$(1)$$ we get
$$(3\cos\theta)\sec\theta + b\tan\theta = 1$$
$$3 + b\tan\theta = 1$$
$$btan\theta = -2$$
$$b = -2\cot\theta$$ ............. $$\left(\because \dfrac{1}{\tan \theta}=\cot \theta\right)$$
$$\therefore a^{2}\left(b^{2}+4 \right) = {(3\cos\theta})^2\left[ { (-2\cot\theta ) }^{ 2 }+4 \right]$$
$$ = 9{ cos }^{ 2 }\theta \quad (4{ cot }^{ 2 }\theta +4)$$
$$ = 9{ \cos }^{ 2 }\theta \cdot 4({\cot}^{ 2 }\theta +1)$$
$$ = 9{ \cos }^{ 2 }\theta \cdot 4\text{cosec}^{ 2 }\theta$$
$$ = 36\times \dfrac { \cos^{2}\theta}{\sin^{2}\theta}$$
$$ = 36{\cot}^{2}\theta = 9(-2cot\theta )^{2} = 9{b}^{2}$$