Self Studies

Introduction to Trigonometry Test - 66

Result Self Studies

Introduction to Trigonometry Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ \displaystyle \cos^2 \theta + sec^2 \theta = p$$, then
    Solution
    $$ \displaystyle p = ( \cos^2 \theta + sec^2 \theta )= (cos \theta - sec \theta)^2 + 2 cos \theta sec \theta = (cos\theta - sec \theta )^2 + 2 \geq 2$$. 
  • Question 2
    1 / -0
    Given that $$ sin \, \alpha = \dfrac{1}{2} , cos \, \beta = \dfrac{1}{2} $$ , then value of $$ ( \alpha + \beta) $$ is 
    Solution
    $$ sin \, \alpha = \dfrac{1}{2} $$  [Given]

    $$ \Rightarrow \, sin \, \alpha = sin \, 30^{\circ} $$ 
    $$ \Rightarrow \, \alpha = 30^{\circ} $$ 

    Also , $$ cos \, \beta = \dfrac{1}{2} $$ 

    $$ \Rightarrow \, cos \, \beta = cos \, 60^{\circ} $$ 
    $$ \Rightarrow \, \beta = 60^{\circ} $$ 
    $$ \therefore \, \alpha + \beta = 30^{\circ} + 60^{\circ} = 90^{\circ} $$ 
    Hence , verifies the option (d). 
  • Question 3
    1 / -0
    $$2 \tan 45^{\circ} + \cos 45^{\circ} - \sin 45 ^{\circ} =? $$
    Solution
    We have,
    $$\sin45^\circ=\dfrac{1}{\sqrt2}$$
    $$\cos45^\circ=\dfrac{1}{\sqrt2}$$
    $$\tan45^\circ=1$$

    Substitute these values in the given expression to find its value,
    $$\begin{aligned}{}2\tan {45^\circ } + \cos {45^\circ } - \sin {45^\circ }&= 2 \times 1 + \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}\\ &= 2\end{aligned}$$
  • Question 4
    1 / -0
    Choose the correct alternative answer for the following question.
    $$cosec \ 45^\circ= ?$$
    Solution
    $$\sin 45^{\circ}=\dfrac {1}{\sqrt2}$$

    $$cosec \ 45^\circ = \sqrt{2}$$

    Hence, the correct answer is $$\sqrt{2}$$.
  • Question 5
    1 / -0
    If $$\theta =30^o$$, then $$\dfrac{1-\sin^22\theta}{\cos 2\theta}$$ is
    Solution
    $$\dfrac{1-sin^22\theta}{\cos 2\theta}=\dfrac{1-\sin^22\times 30^o}{\cos 2\times 30^o}$$
    $$=\dfrac{1-\sin^2 60^o}{\cos 60^o}=\dfrac{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}{\dfrac{1}{2}}$$
    $$\dfrac{1-\dfrac{3}{4}}{\dfrac{1}{2}}=\dfrac{\dfrac{4-3}{4}}{\dfrac{1}{2}}\rightarrow \dfrac{1}{4}\times \dfrac{2}{1}=\dfrac{1}{2}$$
  • Question 6
    1 / -0
    If $$ \sqrt{3} \cos A = \sin A $$, then the value of $$ \cot A $$ is:
    Solution

  • Question 7
    1 / -0
    $$a \sec \theta+b\tan\theta=1, a^{2}\sec^{2}\theta-b^{2}\tan^{2}\theta=5$$
    Then $$ a^{2}(b^{2}+4)=$$
    Solution
    $$a\sec\theta +b\tan\theta =1$$ ............ $$(1)$$
    Squaring both the sides we get
    $$a^{2} \sec^{2}\theta + b^{2}\tan^{2}\theta + 2ab\sec\theta \tan\theta = 1$$ ..... $$(2)$$
    $$a^{2}\sec^{2}\theta - b^{2}\tan^{2}\theta = 5$$ ....... $$(3)$$
    Adding equations $$(2)$$ and $$(3)$$ we get,
    $$2a^{2}\sec^{2}\theta + 2ab\sec\theta \tan\theta =6$$
    $$a^{2}\sec^{2}\theta +ab\sec\theta \tan\theta = 3 $$ 
    $$a\sec\theta \left(a\sec\theta + b\tan\theta  \right) = 3$$
    $$a\sec\theta = 3$$ .......... (Using eqn $$(1)$$) 
    $$\implies a=3\cos\theta$$ .......... $$\left(\because \cos\theta = \dfrac{1}{\sec\theta}\right)$$ 
    Substitute $$a$$ in $$(1)$$ we get
    $$(3\cos\theta)\sec\theta + b\tan\theta = 1$$ 
    $$3 + b\tan\theta = 1$$ 
    $$btan\theta = -2$$ 
    $$b = -2\cot\theta$$ ............. $$\left(\because \dfrac{1}{\tan \theta}=\cot \theta\right)$$
    $$\therefore a^{2}\left(b^{2}+4 \right) = {(3\cos\theta})^2\left[ { (-2\cot\theta ) }^{ 2 }+4 \right]$$ 
                            $$ = 9{ cos }^{ 2 }\theta \quad (4{ cot }^{ 2 }\theta +4)$$ 
                            $$ = 9{ \cos }^{ 2 }\theta \cdot 4({\cot}^{ 2 }\theta +1)$$
                            $$ = 9{ \cos }^{ 2 }\theta \cdot 4\text{cosec}^{ 2 }\theta$$ 
                            $$ = 36\times \dfrac { \cos^{2}\theta}{\sin^{2}\theta}$$ 
                            $$ = 36{\cot}^{2}\theta = 9(-2cot\theta )^{2} = 9{b}^{2}$$
    Hence, $$a^2(b^2 + 4)=9b^2$$
  • Question 8
    1 / -0

    If $$a \sin^{2}x+b\cos^{2}x=c, b\sin^{2}y+a\cos^{2}y=d$$ and $$a \tan x=b\tan y,$$ then $$\displaystyle \frac{a^{2}}{b^{2}}$$ equals to
    Solution
    dividing equation $$asin^2x+bcos^2x=c$$ by $$cos^2x$$
    $$a\ tan^2x+b=c\ sec^2x\Rightarrow a\ tan^2x+b=c(1+tan^2x)\Rightarrow tan^2x(c-a)=b-c\Rightarrow tan^2x=\dfrac{b-c}{c-a}$$

    Similarly , dividing equation $$bsin^2y+acos^2y=d$$ by $$cos^2y$$
    $$b\ tan^2y+a=d\ sec^2y\Rightarrow b\ tan^2y+a=d(1+tan^2y)\Rightarrow tan^2y(d-b)=a-d\Rightarrow tan^2y=\dfrac{a-d}{d-b}$$

    Now, $$atanx=btany\Rightarrow a^2tan^2x=b^2tan^2y\Rightarrow \dfrac{a^2}{b^2}=\dfrac{tan^2y}{tan^2x}\Rightarrow \dfrac{a^2}{b^2}=\dfrac{\dfrac{a-d}{d-b}}{\dfrac{b-c}{c-a}}=\dfrac{(a-d)(c-a)}{(b-c)(d-b)}$$

    Therefore, Answer is $$\dfrac{(a-d)(c-a)}{(b-c)(d-b)}$$
  • Question 9
    1 / -0
    $$\cot^{2}\alpha=1+\mathrm{a}^{2}$$ then $$\text{cosec}\,\alpha+\cot^{3}\alpha\sec\alpha=$$?
    Solution
    $$\text{cosec}\,\alpha + \cot^{3}\alpha \sec\alpha$$
    =$$\dfrac{1}{\sin\alpha}+\dfrac{\cos^2\alpha}{\sin^3\alpha}=\dfrac{\sin^2\alpha+\cos^2\alpha}{\sin^3\alpha}=\dfrac{1}{\sin^3\alpha}$$
    $$ = \text{cosec}^{3}\,\alpha$$
    $$ = (1+\cot^{2}\alpha)^{\tfrac{3}{2}}$$
    $$ = (1 + \mathrm{a^{2}})^{\tfrac{3}{2}}$$
  • Question 10
    1 / -0

    $$\displaystyle {x}=\frac{\sin^{3}{p}}{\cos^{2}{p}}, \displaystyle {y}=\frac{\cos^{3}{p}}{\sin^{2}{p}}$$ and $$\sin p$$ $$+$$ $$\cos p $$ $$= \dfrac 12$$ then $${x}+{y}=$$
    Solution
    $$\sin p+\cos p=\cfrac { 1 }{ 2 } \Rightarrow { \left( \sin p+\cos p \right)  }^{ 2 }=\cfrac { 1 }{ 4 } \\ 1+2\sin p.\cos p=\cfrac { 1 }{ 4 } \Rightarrow \sin p\cos p=-\cfrac { 3 }{ 8 } $$
    Therefore,
    $$x+y=\cfrac { { \sin }^{ 3 }p }{ { \cos }^{ 2 }p } +\cfrac { { \cos }^{ 3 }p }{ { \sin }^{ 2 }p } $$

    $$ =\cfrac { { \sin }^{ 5 }p+{ \cos }^{ 5 }p }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$=\cfrac { { \sin }^{ 3 }p \, \left( 1-{ \cos }^{ 2 }p \right) +{ \cos }^{ 3 }p \, \left( 1-{ \sin }^{ 2 }p \right)  }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \sin }^{ 3 }p-{ \sin }^{ 3 }p \, { \cos }^{ 2 }p+{ \cos }^{ 3 }p-{ \cos }^{ 3 }p \, { \sin }^{ 2 }p }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \sin }^{ 3 }p+{ \cos }^{ 3 }p-{ \sin }^{ 2 }p \, { \cos }^{ 2 }p \, \left( \sin p+\cos p \right)  }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \left( \sin p+\cos p \right)  }^{ 3 }-3\sin p \, \cos p\left( \sin p+\cos p \right) -{ \sin }^{ 2 }p \, { \cos }^{ 2 }p\left( \sin p+\cos p \right)  }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 3 }-3\left( -\cfrac { 3 }{ 8 }  \right) \left( \cfrac { 1 }{ 2 }  \right) -\left( \cfrac { 9 }{ 64 }  \right) \left( \cfrac { 1 }{ 2 }  \right)  }{ \left( \cfrac { 9 }{ 64 }  \right)  } $$

    $$=\cfrac { \cfrac { 1 }{ 8 } +\cfrac { 9 }{ 16 } -\cfrac { 9 }{ 128 }  }{ \cfrac { 9 }{ 64 }  } =\cfrac { 79 }{ 18 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now