Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle \frac{\sin x}{a}=\frac{\cos x}{b}=\frac{\tan x}{c}=k$$, then
    $$bc+\displaystyle \frac{1}{ck}+\frac{ak}{1+bk}$$ is

  • Question 2
    1 / -0

    If $$\text{cosec}\,\theta-\sin\theta=a^{3},\ \sec\theta-\cos\theta=b^{3}$$
    then $$a^{2}b^{2}(a^{2}+b^{2})=$$

  • Question 3
    1 / -0

    $$\cos\theta +\cos^{2}\theta =1$$ and $$a\sin^{12}\theta +b\sin^{10}\theta +c\sin^{8}\theta +d\sin^{6}\theta =1.$$ Then $$\displaystyle \frac{b+c}{a+d}=$$?

  • Question 4
    1 / -0

    If $$a \cos^{3}\alpha+3a\cos\alpha.\sin^{2}\alpha=m$$ and $$a \sin^{3}\alpha+3a\cos^{2}\alpha.\sin\alpha=n$$ then, $$(m+n)^{2/3}+(m-n)^{2/3}$$ is equal to:

  • Question 5
    1 / -0

    If $$\displaystyle \frac { \sin { \alpha  }  }{ \sin { \beta  }  } =\frac { \sqrt { 3 }  }{ 2 } $$ and $$\displaystyle \frac { \cos { \alpha  }  }{ \cos { \beta  }  } =\frac { \sqrt { 5 }  }{ 2 } ,0<\alpha ,\beta <\frac { \pi  }{ 2 } $$, then

  • Question 6
    1 / -0

    lf $$a \sin \theta + b \cos \theta = c$$, then $$\dfrac {a - b \tan \theta}{b + a \tan \theta} =$$

  • Question 7
    1 / -0


     lf $$x=\displaystyle \frac{\sin^{3}p}{\cos^{2}p}, y=\displaystyle \frac{\cos^{3}p}{\sin^{2}p}$$ and $$\displaystyle \sin p+\cos p=\frac{1}{2}$$, then $$x+y=$$

  • Question 8
    1 / -0

    If $$\cos x +\cos^{2} x+\cos^{3} x=1, a\sin^{6} x + b \sin^{4} x + c \sin^{2} x + d =\mathrm{0}$$ and $$ a >0$$ then $$ a + b + c + d =$$

  • Question 9
    1 / -0

    If $$\displaystyle a^{2}\cos^{4}\: \theta -b^{2}\sin^{4}\, \theta =0$$, then $$\displaystyle \: \frac{\sin^{8}\, \theta }{a^{3}}+\frac{\cos^{8}\theta }{b^{3}}$$ is 

  • Question 10
    1 / -0

    If $$\sin x+\sin ^{2}x=1$$,then the value of $$\cos ^{12}x+3\cos ^{10}x+3\cos ^{8}x+\cos ^{6}x-2$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now