Self Studies

Introduction to Trigonometry Test - 67

Result Self Studies

Introduction to Trigonometry Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \frac{\sin x}{a}=\frac{\cos x}{b}=\frac{\tan x}{c}=k$$, then
    $$bc+\displaystyle \frac{1}{ck}+\frac{ak}{1+bk}$$ is
    Solution
    $$sin x = ak$$
    $$cos x = bk$$
    $$tan x = ck$$
    Since,$$ \displaystyle tan x = \frac{sin x}{cos x} $$,

    $$\displaystyle ck =  \frac{a}{b} $$ Or, $$\displaystyle  bc =  \frac{a}{k} $$
    $$\displaystyle ck = tan x$$
    $$ \Rightarrow \displaystyle \frac{1}{ck} = cot x $$

    $$\Rightarrow  \displaystyle \frac{ak}{1+bk}  =  \frac{sin x}{1+cos x} $$

    $$\Rightarrow \displaystyle  \frac{1}{ck} + \frac{ak}{1+bk} = cot x + \frac{sin x}{1+cos x} $$

    $$\displaystyle =  \frac{cos x + {cos}^{2} x + {sin}^{2} x}{sin x(1+cos x)} $$

    $$\displaystyle = \frac{1+cos x}{sinx(1+cos x)} $$
    $$=  cosec x $$
    Hence, $$bc + \dfrac{1}{ck} + \dfrac{ak}{1+bk} $$ = $$ \dfrac{a}{k} + \dfrac{1}{ak} $$
  • Question 2
    1 / -0
    If $$\text{cosec}\,\theta-\sin\theta=a^{3},\ \sec\theta-\cos\theta=b^{3}$$
    then $$a^{2}b^{2}(a^{2}+b^{2})=$$
    Solution

    $$\csc { \theta  } -\sin { \theta  } ={ a }^{ 3 }$$

    $$\Rightarrow \dfrac { 1-\sin ^{ 2 }{ \theta  }  }{ \sin { \theta  }  } ={ a }^{ 3 }$$

    $$\Rightarrow \dfrac { \cos ^{ 2 }{ \theta  }  }{ \sin { \theta  }  } ={ a }^{ 3 }\quad -(1)$$

    $$\sec { \theta  } -\cos { \theta  } ={ b }^{ 3 }$$

    $$\Rightarrow \dfrac { 1-\cos ^{ 2 }{ \theta  }  }{ \cos { \theta  }  } ={ b }^{ 3 }$$

    $$\Rightarrow \dfrac { \sin ^{ 2 }{ \theta  }  }{ \cos { \theta  }  } ={ b }^{ 3 }\quad -(2)$$

    $$(1)\div (2)\Rightarrow \dfrac { \cos ^{ 3 }{ \theta  }  }{ \sin ^{ 3 }{ \theta  }  } =\dfrac { { a }^{ 3 } }{ { b }^{ 3 } } $$

    $$\tan { \theta  } =\dfrac { b }{ a } \quad -(3)$$

    $$(1)\times (2)\Rightarrow \dfrac { \cos ^{ 2 }{ \theta  }  }{ \sin { \theta  }  } \times \dfrac { \sin ^{ 2 }{ \theta  }  }{ \cos { \theta  }  } ={ a }^{ 3 }{ b }^{ 3 }$$

    $$\sin { \theta  } .\cos { \theta  } ={ a }^{ 3 }{ b }^{ 3 }\quad -(4)$$

    $$(3)\times (4)\Rightarrow \sin ^{ 2 }{ \theta  } ={ a }^{ 2 }{ b }^{ 4 }$$

    $$(4)\div (3)\Rightarrow \cos ^{ 2 }{ \theta  } ={ a }^{ 4 }{ b }^{ 2 }$$

    $$(3) \Rightarrow 1+\dfrac { { b }^{ 2 } }{ { a }^{ 2 } } =1+\tan ^{ 2 }{ \theta  } =\sec ^{ 2 }{ \theta  } $$

    Given, $${ a }^{ 2 }{ b }^{ 2 }\left( { a }^{ 2 }+{ b }^{ 2 } \right) ={ a }^{ 4 }{ b }^{ 2 }\left( 1+\dfrac { { b }^{ 2 } }{ { a }^{ 2 } }  \right) $$

    $$=\cos ^{ 2 }{ \theta  } \times \sec ^{ 2 }{ \theta  } =1$$

  • Question 3
    1 / -0
    $$\cos\theta +\cos^{2}\theta =1$$ and $$a\sin^{12}\theta +b\sin^{10}\theta +c\sin^{8}\theta +d\sin^{6}\theta =1.$$ Then $$\displaystyle \frac{b+c}{a+d}=$$?
    Solution
    $$\cos\theta +\cos^{ 2 }\theta =1$$
    $$\Rightarrow \cos\theta +1-\sin^{ 2 }\theta =1$$ 
    $$\Rightarrow \cos\theta = \sin^{ 2 }\theta $$
     $$\Rightarrow { \sqrt { 1-\sin^{2}} \theta  }={ \sin^{2}\theta}$$

    On squaring both sides:-
    $$\Rightarrow { \left( \sqrt { 1-\sin^{2}} \theta  \right)}^{2}={\left( \sin^{2}\theta  \right)}^{2}$$
     $$\Rightarrow 1-\sin^{2}\theta = \sin^{4}\theta $$
     $$\Rightarrow \sin^{4}\theta + \sin^{2}\theta =1$$

    On taking cube on both sides:- 
    $$\Rightarrow { \left( \sin^{4}\theta +\sin^{2}\theta  \right)  }^{3}={\left( 1 \right)  }^{3}$$
     $$\Rightarrow \sin^{12}\theta +3\sin^{10}\theta +3\sin^{8}\theta +\sin^{6}\theta =1$$

    On comparing above obtained equation with  $$a\sin^{12}\theta +b\sin^{10}\theta +c\sin^{8}\theta +d\sin^{6}\theta =1$$ we get,
     $$a=1,b=3,c=3,d=1$$

    Hence,
     $$\ \dfrac {b+c}{a+d} =\dfrac { 3+3 }{ 1+1 } $$
                   $$=\dfrac { 6 }{ 2 }$$
                   $$ =3$$

     Hence, option $$B$$ is correct.
  • Question 4
    1 / -0
    If $$a \cos^{3}\alpha+3a\cos\alpha.\sin^{2}\alpha=m$$ and $$a \sin^{3}\alpha+3a\cos^{2}\alpha.\sin\alpha=n$$ then, $$(m+n)^{2/3}+(m-n)^{2/3}$$ is equal to:
    Solution
    $$m= a\ {cos}^{ 3 }\alpha + 3 a\ cos\alpha\ { sin }^{ 2 }\alpha$$ 
    $$n = a{ sin }^{ 3 }\alpha + 3a\ {cos}^{2}\alpha\ sin\alpha$$ 
    $$\therefore m+n = a({ cos }^{ 3 }\alpha +{ sin }^{ 3 }\alpha +3cos\alpha { sin }^{ 2 }\alpha +3{ cos }^{ 2 }\alpha sin\alpha )$$ 
    $$m+n = a\left[ { cos }^{ 3 }\alpha +{ sin }^{ 3 }\alpha +3sin\alpha cos\alpha (sin\alpha +cos\alpha ) \right] $$ 
    $$m+n = a{ \left( cos\alpha +sin\alpha  \right)  }^{ 3 }$$ ...... $$\left[ \because { (a+b })^{3}={ a }^{ 3 }+{ b }^{ 3 }+3ab(a+b) \right]$$ 
    Similarly, $$m-n = a{ \left( cos\alpha -sin\alpha  \right)  }^{ 3 }$$ 
    Now, $${ (m+n) }^{ 2/3 }+{ (m-n) }^{ 2/3 }={ a }^{ 2/3 }\left[ { \left( cos\alpha +sin\alpha  \right)  }^{ 3\times2/3 }+{ \left( cos\alpha -sin\alpha  \right)  }^{ 3\times2/3 } \right]$$ 
              $$= { a }^{ 2/3 }\left[ { \left( cos\alpha +sin\alpha  \right)  }^{ 2 }+{ \left( cos\alpha -sin\alpha  \right)  }^{ 2 } \right]$$  
              $$= { a }^{ 2/3 }\left[ { cos }^{ 2 }\alpha +{ sin }^{ 2 }\alpha +2sin\alpha cos\alpha +{ cos }^{ 2 }\alpha +{ sin }^{ 2 }\alpha -2sin\alpha cos\alpha  \right]$$
              $$={ a }^{ 2/3 }(1+1)$$ ....... $$(\because \quad { cos }^{ 2 }\alpha +{ sin }^{ 2 }\alpha =1)$$ 
              $$=2{ a }^{ 2/3 }$$
  • Question 5
    1 / -0
    If $$\displaystyle \frac { \sin { \alpha  }  }{ \sin { \beta  }  } =\frac { \sqrt { 3 }  }{ 2 } $$ and $$\displaystyle \frac { \cos { \alpha  }  }{ \cos { \beta  }  } =\frac { \sqrt { 5 }  }{ 2 } ,0<\alpha ,\beta <\frac { \pi  }{ 2 } $$, then
    Solution
    $$\dfrac{\sin\alpha}{\sin\beta}=\dfrac{\sqrt{3}}{2}$$

    Or $$\sqrt{\dfrac{1-\cos^{2}\alpha}{1-\cos^{2}\beta}}=\dfrac{\sqrt{3}}{2}$$

    $$\dfrac{1-\cos^{2}\alpha}{1-\cos^{2}\beta}=\dfrac{3}{4}$$

    Or $$4-4\cos^{2}\alpha=3-3\cos^{2}\beta$$

    $$4\cos^{2}\alpha-1=3\cos^{2}\beta$$ ...(i)

    And it is given that 

    $$\cos\alpha=\dfrac{\sqrt{5}}{2}\cos\beta$$

    Or $$\cos^{2}\alpha=\dfrac{5}{4}\cos^{2}\beta$$

    Substituting in equation i, we get 

    $$5cos^{2}\beta-1=3cos^{2}\beta$$

    Or $$2cos^{2}\beta=1$$

    Or $$cos\beta=\dfrac{1}{\sqrt{2}}=sin\beta$$

    Therefore
    $$tan\beta=1$$

    Now 
    $$cos\beta=sin\beta=\dfrac{1}{\sqrt{2}}$$

    Hence 
    $$cos\alpha=\dfrac{\sqrt{5}}{2\sqrt{2}}$$

    And $$sin\alpha=\dfrac{\sqrt{3}}{2\sqrt{2}}$$

    Therefore 
    $$tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{3}}{\sqrt{5}}$$
  • Question 6
    1 / -0
    lf $$a \sin \theta + b \cos \theta = c$$, then $$\dfrac {a - b \tan \theta}{b + a \tan \theta} =$$
    Solution
    $$a\sin {\theta +b\cos {\theta}} =\quad c$$
    $$a\cos {\theta -b\sin {\theta}} = \quad k$$
    Squaring on both sides and adding gives
    $$a^{2} + b^{2} = c^{2} + k^{2}$$
    $$k = \pm \sqrt {a^{2} + b^{2} - c^{2}}$$
    $$\dfrac {a-b\tan {\theta}}{b+a\tan {\theta}} = \dfrac {a\cos {\theta - b\sin {\theta}}}{a\sin {\theta + b\cos {\theta}}} = \dfrac {k}{c} = \dfrac {\pm \sqrt {a^{2} + b^{2} - c^{2}}}{c}$$ 
  • Question 7
    1 / -0

     lf $$x=\displaystyle \frac{\sin^{3}p}{\cos^{2}p}, y=\displaystyle \frac{\cos^{3}p}{\sin^{2}p}$$ and $$\displaystyle \sin p+\cos p=\frac{1}{2}$$, then $$x+y=$$
    Solution
    $$\sin p+\cos p=\cfrac { 1 }{ 2 } \Rightarrow { \left( \sin p+\cos p \right)  }^{ 2 }=\cfrac { 1 }{ 4 } \\ 1+2\sin p.\cos p=\cfrac { 1 }{ 4 } \Rightarrow \sin p\cos p=-\cfrac { 3 }{ 8 } $$
    Therefore,
    $$x+y=\cfrac { { \sin }^{ 3 }p }{ { \cos }^{ 2 }p } +\cfrac { { \cos }^{ 3 }p }{ { \sin }^{ 2 }p } $$

    $$ =\cfrac { { \sin }^{ 5 }p+{ \cos }^{ 5 }p }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$=\cfrac { { \sin }^{ 3 }p \, \left( 1-{ \cos }^{ 2 }p \right) +{ \cos }^{ 3 }p \, \left( 1-{ \sin }^{ 2 }p \right)  }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \sin }^{ 3 }p-{ \sin }^{ 3 }p \, { \cos }^{ 2 }p+{ \cos }^{ 3 }p-{ \cos }^{ 3 }p \, { \sin }^{ 2 }p }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \sin }^{ 3 }p+{ \cos }^{ 3 }p-{ \sin }^{ 2 }p \, { \cos }^{ 2 }p \, \left( \sin p+\cos p \right)  }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \left( \sin p+\cos p \right)  }^{ 3 }-3\sin p \, \cos p\left( \sin p+\cos p \right) -{ \sin }^{ 2 }p \, { \cos }^{ 2 }p\left( \sin p+\cos p \right)  }{ { \sin }^{ 2 }p \, { \cos }^{ 2 }p } $$

    $$ =\cfrac { { \left( \cfrac { 1 }{ 2 }  \right)  }^{ 3 }-3\left( -\cfrac { 3 }{ 8 }  \right) \left( \cfrac { 1 }{ 2 }  \right) -\left( \cfrac { 9 }{ 64 }  \right) \left( \cfrac { 1 }{ 2 }  \right)  }{ \left( \cfrac { 9 }{ 64 }  \right)  } $$

    $$=\cfrac { \cfrac { 1 }{ 8 } +\cfrac { 9 }{ 16 } -\cfrac { 9 }{ 128 }  }{ \cfrac { 9 }{ 64 }  } =\cfrac { 79 }{ 18 } $$
  • Question 8
    1 / -0
    If $$\cos x +\cos^{2} x+\cos^{3} x=1, a\sin^{6} x + b \sin^{4} x + c \sin^{2} x + d =\mathrm{0}$$ and $$ a >0$$ then $$ a + b + c + d =$$
    Solution

    $$\cos x +\cos^2 x+\cos ^3 x=1$$

    $$\cos x(1+ \cos ^{2}x) = 1 - \cos ^{2}x$$
    $$\cos x(2- \sin ^{2}x) = \sin ^{2}x$$
    we square both the sides
    $$\cos ^{2}x(2-\sin ^{2}x)^{2}= \sin ^{4}x$$
    $$(1-\sin ^{2}x)(2-\sin ^{2}x)^{2}= \sin ^{4}x$$
    we simplify this to get  
    $$\sin ^{6}x + 4\sin ^{4}x- 8\sin ^{2}x + 4 = 0$$

    equating with given equation we get

    $$a=1,b=4,c=-8,d=4$$

  • Question 9
    1 / -0
    If $$\displaystyle a^{2}\cos^{4}\: \theta -b^{2}\sin^{4}\, \theta =0$$, then $$\displaystyle \: \frac{\sin^{8}\, \theta }{a^{3}}+\frac{\cos^{8}\theta }{b^{3}}$$ is 
    Solution
    Given, 
    $$a^2\cos^4\theta-b^2\sin^4\theta=0$$
    then $$\tan^4\theta=\dfrac{a^2}{b^2}$$
    $$\tan^2\theta=\dfrac{a}{b}$$
    $$\sec^2\theta=\dfrac{a+b}{b}$$
    $$\cos^2\theta=\dfrac{b}{a+b}$$
    $$\sin^2\theta=\dfrac{a}{a+b}$$
    $$\dfrac{\sin^8\theta}{a^3}+\dfrac{\cos^8\theta}{b^3} = \dfrac{a^4}{a^3(a+b)^4}+\dfrac{b^4}{b^3(a+b)^4}$$
    $$\dfrac{a}{(a+b)^4}+\dfrac{b}{(a+b)^4}$$
    $$=\dfrac{1}{(a+b)^3}$$
  • Question 10
    1 / -0
    If $$\sin x+\sin ^{2}x=1$$,then the value of $$\cos ^{12}x+3\cos ^{10}x+3\cos ^{8}x+\cos ^{6}x-2$$ is equal to
    Solution
    We have $$\sin x+\sin ^{2}x=1$$ 

    $$\Rightarrow \sin x=1-\sin ^{2}x\Rightarrow \sin x=\cos ^{2}x$$

    Now $$\cos ^{12}x+3\cos ^{10}x+3\cos ^{8}x+\cos ^{6}x-2=\sin ^{6}x+3\sin ^{5}x+3\sin ^{4}x+\sin ^{3}x-2$$

    $$=\left ( \sin ^{2}x \right )^{3}+3 \left ( \sin ^{2}x \right )^{2}(\sin x)+3\left ( \sin ^{2}x \right )\left ( \sin x \right )^{2}+\left ( \sin x \right )^3-2$$

    $$=\left ( \sin ^{2}x +\sin x\right )^{3}-2$$.............$$(a+b)^3=a^3+3a^2b+3ab^2+b^3$$

    $$=\left ( 1 \right )^{3}-2$$

    $$=-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now