Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    If $$a=\cos\alpha \cos\beta+\sin \alpha \sin\beta \cos\gamma$$
    $$b=\cos\alpha \sin \beta-\sin\alpha \cos\beta \cos\gamma$$
    and $$c=\sin \alpha \sin\gamma$$, then $$a^2+b^2+c^2$$ is equal to

  • Question 2
    1 / -0

    The value of expression $$\displaystyle \frac{\sin 30^{\circ}+\tan 45^{\circ}-\sec 60^{\circ}}{\text{cosec}30^{\circ}-\cot 45^{\circ}-\cos 60^{\circ}}$$ = 

  • Question 3
    1 / -0

    $$\text{cosec}^2 A \cot^2A-\sec^2A \tan^2A-(\cot^2A-\tan^2A)(\sec^2A+\text{cosec}^2A-1)$$ is equal to

  • Question 4
    1 / -0

    If $$x=\dfrac {\sin^3p}{\cos^2p}, y=\dfrac {\cos^3p}{\sin^2p}$$ and $$\sin p + \cos p= \dfrac 12$$, then $$x+y$$ is equal to

  • Question 5
    1 / -0

    Find the relation obtained by eliminating $$\displaystyle \theta $$ from the equation $$\displaystyle x=a\cos \theta +b\sin \theta  $$ and $$\displaystyle y=a\sin \theta -b\cos \theta $$

  • Question 6
    1 / -0

    Which one of the following when simplified is not equal to one?

  • Question 7
    1 / -0

    If $$\tan { \theta  } =\cfrac { p }{ q } $$, then what is $$\cfrac { p\sec { \theta  } -qco\sec { \theta  }  }{ p\sec { \theta  } +qco\sec { \theta  }  } $$ equal to?

  • Question 8
    1 / -0

    If $$\frac{1 - cos x}{cos x (1 + cos x)} = \frac{sin \alpha}{cos x} - \frac{2}{1 + cos x}$$, then $$\alpha$$ =

  • Question 9
    1 / -0

    If $$\cos P=\dfrac{1}{7}$$ and $$\cos Q=\dfrac{13}{14}$$, P and Q both are acute angle then the value of $$P-Q$$ will be?

  • Question 10
    1 / -0

    In the figure given
    $$\angle ABD=\angle PQD=\angle CDQ=\cfrac { \pi  }{ 2 } $$. If $$AB=x.PQ=z$$ and $$CD=y$$, then which one of the following is correct?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now