Self Studies

Introduction to Trigonometry Test - 70

Result Self Studies

Introduction to Trigonometry Test - 70
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a=\cos\alpha \cos\beta+\sin \alpha \sin\beta \cos\gamma$$
    $$b=\cos\alpha \sin \beta-\sin\alpha \cos\beta \cos\gamma$$
    and $$c=\sin \alpha \sin\gamma$$, then $$a^2+b^2+c^2$$ is equal to
    Solution
    Given $$a=\cos\alpha \cos\beta+ \sin \alpha \sin\beta \cos\gamma$$
    $$b=\cos\alpha \sin \beta-\sin\alpha \cos\beta \cos\gamma$$
    and $$c=\sin \alpha \sin\gamma$$

    Consider, $$a^{ 2 }+b^{ 2 }+c^{ 2 }=\cos ^{ 2 }{ \alpha  } \cos ^{ 2 }{ \beta  } +\sin ^{ 2 }{ \alpha  } \sin ^{ 2 }{ \beta  } \cos ^{ 2 }{ \gamma  } +2\cos\alpha \cos\beta \sin\alpha \sin\beta \cos\gamma\\ +\cos ^{ 2 }{ \alpha  } \sin ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \beta  } \sin ^{ 2 }{ \alpha  } \cos ^{ 2 }{ \gamma  } -2\cos\alpha \cos\beta \sin\alpha \sin\beta cos\gamma +4\sin ^{ 2 }{ \alpha  } \sin ^{ 2 }{ \gamma  } $$

    $$\Rightarrow a^{ 2 }+b^{ 2 }+c^{ 2 }=\cos ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \alpha  } \cos ^{ 2 }{ \gamma  } +4\sin ^{ 2 }{ \alpha  } \sin ^{ 2 }{ \gamma  } $$

    $$\Rightarrow a^{ 2 }+b^{ 2 }+c^{ 2 }=1+3{ c }^{ 2 }$$
  • Question 2
    1 / -0
    The value of expression $$\displaystyle \frac{\sin 30^{\circ}+\tan 45^{\circ}-\sec 60^{\circ}}{\text{cosec}30^{\circ}-\cot 45^{\circ}-\cos 60^{\circ}}$$ = 
    Solution
    $$\displaystyle \frac{\sin 30^{\circ}+\tan 45^{\circ}-\sec 60^{\circ}}{\text{cosec}30^{\circ}-\cot 45^{\circ}-\cos 60^{\circ}}$$ 

    = $$\displaystyle \frac{\frac{1}{2} + 1 - 2}{2 - 1 - \frac{1}{2}}$$

    = $$\displaystyle \frac{1 + 2 - 4}{4 - 2 - 1}$$

    = $$\displaystyle \frac{-1}{1}$$

    = $$-1$$
  • Question 3
    1 / -0
    $$\text{cosec}^2 A \cot^2A-\sec^2A \tan^2A-(\cot^2A-\tan^2A)(\sec^2A+\text{cosec}^2A-1)$$ is equal to
    Solution
    $$\text{cosec}^2 A \cot^2A-\sec^2A \tan^2A-(\cot^2A-\tan^2A)(\sec^2A+\text{cosec}^2A-1)$$

    $$=\text{cosec}^2A \cot^2A - \sec^2A \tan^2A-\cot^2A\sec^2 A-\cot^2A \text{cosec}^2A +\cot^2A$$
        $$+\tan^2A\sec^2A+\tan^2A \text{cosec}^2A-\tan^2A$$

    $$=-\cot^{ 2 }A\sec^{ 2 }A+\cot ^{ 2 }{ A } +\tan^{ 2 }A\text{cosec}^{ 2 }A-\tan ^{ 2 }{ A } $$

    $$=-\cot^{ 2 }A(\sec^{ 2 }A-1)+\tan^{ 2 }A(\text{cosec}^{ 2 }A-1)$$

    $$=-\cot^{ 2 }A\tan ^{ 2 }{ A } +\tan^{ 2 }A\cot ^{ 2 }{ A } $$

    $$=-1+1$$

    $$=0$$
  • Question 4
    1 / -0
    If $$x=\dfrac {\sin^3p}{\cos^2p}, y=\dfrac {\cos^3p}{\sin^2p}$$ and $$\sin p + \cos p= \dfrac 12$$, then $$x+y$$ is equal to
    Solution
    Given $$x=\displaystyle \cfrac {\sin^3p}{\cos^2p}, y=\cfrac {\cos^3p}{\sin^2p}$$; and $$\sin p + \cos p=\displaystyle \frac{1}{2}$$ 

    Consider, $$x+y=\displaystyle \cfrac { \sin^{ 3 }p }{ \cos^{ 2 }p } +\cfrac { \cos^{ 3 }p }{ \sin^{ 2 }p } $$

    $$\Rightarrow \displaystyle x+y=\cfrac { \sin^{ 5 }p+\cos^{ 5 }p }{ \sin^{ 2 }p\cos^{ 2 }p } $$

    $$\displaystyle =\cfrac { \sin^{ 3 }p(1-\cos ^{ 2 }{ p } )+\cos^{ 3 }p(1-\sin ^{ 2 }{ p } ) }{ \sin^{ 2 }p\cos^{ 2}p } $$

    $$\displaystyle =\cfrac { \sin^{ 3 }p+\cos^{ 3 }p-\sin ^{ 2 }{ p } \cos ^{ 2 }{ p } (\sin { p } +\cos { p } ) }{ \sin^{ 2 }p\cos^{ 2 }p } $$

    $$\displaystyle =\cfrac { { (\sin { p } +\cos { p } ) }^{ 3 }-3\sin { p } \cos { p } (\sin { p } +\cos { p } )-\sin ^{ 2 }{ p } \cos ^{ 2 }{ p } (\sin { p } +\cos { p } ) }{ \sin^{ 2 }p\cos^{ 2 }p } $$       .....(1)

    Since $$(\sin p+\ cos p)^2=\sin^{2} p+\cos ^{2}p+2\sin p\cos p$$
    $$\Rightarrow \displaystyle \sin p\cos p =-\cfrac{3}{4}$$

    So, using in (1),
    $$x+y=\displaystyle \dfrac { \dfrac { 1 }{ 8 } +\dfrac { 9 }{ 16 } -\dfrac { 9 }{ 32 }  }{ \dfrac { 9 }{ 16 }  } =\dfrac { 79 }{ 18 } $$
  • Question 5
    1 / -0
    Find the relation obtained by eliminating $$\displaystyle \theta $$ from the equation $$\displaystyle x=a\cos \theta +b\sin \theta  $$ and $$\displaystyle y=a\sin \theta -b\cos \theta $$
    Solution
    Given, $$ x = a \cos  \theta + b \sin  \theta $$ and $$ y = a \sin  \theta - b \cos  \theta $$

    Squaring them and adding we get 
    $$ x^2 + y^2 = a^2 \cos ^2 \theta + b^2 \sin ^2 \theta + 2ab\cos  \theta \sin \theta  + a^2 \sin ^2 \theta + b^2 \cos ^2 \theta - 2ab\cos  \theta \sin \theta $$
    $$ \Rightarrow  x^2 + y^2 = a^2 \cos ^2 \theta + b^2 \sin ^2 \theta  + a^2 \sin ^2 \theta + b^2 \cos ^2 \theta $$
    $$ \Rightarrow  x^2 + y^2 = a^2 (\cos ^2 \theta + \sin ^2 \theta) +  b^2 ( \sin ^2 \theta  + \cos ^2 \theta  ) $$
    $$ \Rightarrow  x^2 + y^2 = a^2 + b^2 $$
  • Question 6
    1 / -0
    Which one of the following when simplified is not equal to one?
    Solution
    (1) $$\displaystyle \tan 18^{\circ}\times \tan 36^{\circ}\times \tan 54^{\circ}\times \tan 72^{\circ}$$
    = $$\displaystyle \tan 18^{\circ}\times \tan (90 - 54)^{\circ}\times \tan 54^{\circ}\times \tan (90 - 18)^{\circ}$$
    = $$\displaystyle \tan 18^{\circ}\times \cot 54^{\circ}\times \tan 54^{\circ}\times \cot 18^{\circ}$$
    = $$1$$

    (2) $$\displaystyle \sin ^{2}19^{\circ}+\sin ^{2}71^{\circ}$$
    = $$\displaystyle \sin ^{2}19^{\circ}+\sin ^{2}(90 - 19)^{\circ}$$
    = $$\displaystyle \sin ^{2}19^{\circ}+\cos ^{2}19^{\circ}$$
    = $$1$$

    (3) $$\displaystyle \frac{2\sin 62^{\circ}}{\cos 28^{\circ}}-\frac{\sec 42^{\circ}}{cosec48^{\circ}}$$

    = $$\displaystyle \frac{2\sin 62^{\circ}}{\cos (90 - 62)^{\circ}}-\frac{\sec 42^{\circ}}{cosec (90 - 42)^{\circ}}$$

    = $$\displaystyle \frac{2\sin 62^{\circ}}{\sin 62^{\circ}}-\frac{\sec 42^{\circ}}{\sec 42^{\circ}}$$

    = $$2 - 1$$
    = $$1$$

    Thus, all are equal to one. Hence, none of these is the answer.
  • Question 7
    1 / -0
    If $$\tan { \theta  } =\cfrac { p }{ q } $$, then what is $$\cfrac { p\sec { \theta  } -qco\sec { \theta  }  }{ p\sec { \theta  } +qco\sec { \theta  }  } $$ equal to?
  • Question 8
    1 / -0
    If $$\frac{1 - cos x}{cos x (1 + cos x)} = \frac{sin \alpha}{cos x} - \frac{2}{1 + cos x}$$, then $$\alpha$$ =
    Solution

  • Question 9
    1 / -0
    If $$\cos P=\dfrac{1}{7}$$ and $$\cos Q=\dfrac{13}{14}$$, P and Q both are acute angle then the value of $$P-Q$$ will be?
    Solution

  • Question 10
    1 / -0
    In the figure given
    $$\angle ABD=\angle PQD=\angle CDQ=\cfrac { \pi  }{ 2 } $$. If $$AB=x.PQ=z$$ and $$CD=y$$, then which one of the following is correct?

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now