Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    $$\sin { { 48 }^{ 0 } } .\sin { 12^{ 0 } } =$$

  • Question 2
    1 / -0

    $$1+cosec\dfrac { \pi }{ 4 } +cosec\dfrac { \pi }{ 8 } +cosec\dfrac { \pi }{ 16 } =$$

  • Question 3
    1 / -0

    $$\frac { \sec { 8A } -1 }{ \sec { 4A } -1 } =$$

  • Question 4
    1 / -0

    Suppose $$I_1 = \displaystyle \int_0^{\pi/2} cos(\pi sin^2x)dx; I_2 =  \displaystyle \int_0^{\pi/2} cos(2\pi sin^2x)dx \,and \, I_3 =  \displaystyle \int_0^{\pi/2} cos(\pi sin x)dx$$ then

  • Question 5
    1 / -0

    $$1+cosec\frac { \pi  }{ 4 } +cosec\frac { \pi  }{ 8 } cosec\frac { \pi  }{ 16 } =$$

  • Question 6
    1 / -0

    If the median of a triangle ABC passing through A is perpendicular AB then tanA + 2tanB = 

  • Question 7
    1 / -0

    $$\left( \frac { 1 }{ { sec }^{ 2 }\theta -{ cos }^{ 2 }\theta  } +\dfrac { 1 }{ cosec^{ 2 }{ \theta -sin }^{ 2 }\theta  }  \right) { sin }^{ 2 }{ \theta \quad cos }^{ 2 }\theta =$$

  • Question 8
    1 / -0

    An angle is increasing at a constant rate. The rate of increase of tan when the angle is $$ \pi /3 $$ is 

  • Question 9
    1 / -0

    $$\dfrac{cos A}{1+sin A} +\dfrac{cos A}{1-sin A} =$$

  • Question 10
    1 / -0

    The value of $$\cfrac { cot{ 54 }^{ 0 } }{ cot36^{ 0 } } +\cfrac { tan{ 20 }^{ 0 } }{ cot{ 70 }^{ 0 } } =$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now