Self Studies

Some Applications of Trigonometry test - 31

Result Self Studies

Some Applications of Trigonometry test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    From the top of a cliff, the angle of depression of car on the ground is $$60^o$$. If the car is at a distance of 30 m from the cliff. Find the height of the cliff.
    Solution
    Given that, the angle of depression of car on the ground from the top of a cliff is $$60^0$$. Also, the car is at a distance of $$30\ m$$ from the cliff.
    To find out: The height of the cliff.

    Based on the given information, we can draw the figure shown above.
    $$\therefore \angle PAC=\angle ACB=60^{0}$$

    Now, in $$Δ ABC$$,
    $$\tan 60^{0}=\dfrac{AB}{BC}\quad \quad \left[\because \ \tan \theta=\dfrac{P}{B}\right]$$

    $$ \Rightarrow AB=30\times \tan 60^{0}$$
    $$\Rightarrow AB=30\times \sqrt 3\quad \quad \left[\because \ \tan 60^0=\sqrt3 \right]$$
    $$\Rightarrow AB=30\times 1.732$$
    $$\therefore \  AB\approx52\ m$$

    Hence, the height of the cliff is approximately $$52\ m$$.

  • Question 2
    1 / -0
     The angle of elevation of the top of an electric pole from a point $$15$$ feet away from the foot is $$30^o$$. Find the height of the pole.

    Solution
    Given, $$BC$$ is $$15$$ and angle of elevation on ground is $$30^{0}$$
    Let the height of the pole be $$h$$
    In right angled $$Δ ABC$$.
    $$tan30^{0}=\dfrac{AB}{BC}$$
    $$\dfrac{1}{\sqrt 3}=\dfrac{h}{15}$$
    $$\therefore h=\dfrac{15}{\sqrt 3}$$
    $$\therefore h=5\sqrt 3$$ feet

  • Question 3
    1 / -0
    The shadow of a pole standing on a horizontal plane is $$a$$ meters longer when the sun's elevation is $$\theta$$ than when it is $$\phi$$. The height of the pole will be:   {Use $$\sin(A-B) = \sin A \cos B - \sin B \cos A$$}
    Solution
    Let the height of the pole standing on a horizontal plane be $$h$$
    Let the length of the shadow be $$x$$ and $$(x+a)$$, when the sun's elevation is $$\phi $$ and $$\theta$$ respectively.
    In $$\triangle APQ$$,

    $$\dfrac{x}{h}=\cot \phi $$

    $$\Rightarrow  x=h \cot \phi $$   ....(1)

    In $$\triangle BPQ$$,

    $$\dfrac{x+a}{h}=\cot \theta$$

    $$\Rightarrow (x+a)=h \cot \theta$$  ....(2)

    $$\Rightarrow  (x+a)-x=h \cot \theta-h \cot \phi$$          {using (1)}

    $$\Rightarrow a=h(cot \theta-cot \phi)$$

    $$\Rightarrow h=\cfrac { a }{ \left( \dfrac { \cos \theta  }{ \sin \theta  } -\dfrac { \cos \phi  }{ \sin \phi  }  \right)  } $$

    $$\Rightarrow h=a\cfrac { \sin \theta \sin \phi  }{ \left( \sin \phi \cos \theta -\cos \phi \sin \theta  \right)  } $$

    $$\Rightarrow h=a\cfrac { \sin \theta \sin \phi  }{ \sin\left( \phi - \theta  \right)  } $$

  • Question 4
    1 / -0
    The angle of elevation of the top of a tower from a point on the ground, which is $$30$$ m away from the foot of the tower is $$30$$. The height of the tower is :
  • Question 5
    1 / -0
    The shadow of a vertical tower on level ground increases by $$20$$m, when the altitude of the sun changes from angle of elevation $$60^o$$ to $$45^o$$. Find the height of the tower.

    Solution
    Let the height of the tower be $$h$$
    In right $$ΔOBC$$
    $$tan60^{0}=\dfrac{h}{x}$$
    $$\Rightarrow \sqrt 3=\dfrac{h}{x}$$
    $$\Rightarrow h=\sqrt {3 x}$$   ....................(1)
    In right $$ΔOAC$$.
    $$tan45^{0}=\dfrac{h}{AB+BC}$$
    $$\Rightarrow tan45^{0}=\dfrac{h}{20+x}$$
    $$=>h=20+x$$    ..............(2)
    From (1) & (2) we get
    $$\sqrt {3 x}=20+x$$
    $$\Rightarrow x=\dfrac{20}{\sqrt {3-1}}$$
    $$\Rightarrow x=\dfrac{20\sqrt {3+1}}{2}$$
    $$\Rightarrow x=10(\sqrt 3+1)$$ 
             $$=27.32$$ metres. [since $$\sqrt 3=1.732$$]
    $$\therefore h=20+x$$
            $$=20+27.32$$
            $$=47.32\ m$$
    Thus the height of the tower is $$47.32\ m$$

  • Question 6
    1 / -0
    A tree, $$15$$m high, is broken by the wind in such a way that its top touches the ground and makes an angle $$30^o$$ with the ground. At what height from the bottom is the tree broken by the wind?

    Solution
    Let AB be the height of tree $$=15m$$.
    The tree is broken at point C. The broken part of tree which touches the ground be CO.
    $$AB=15$$, then let $$AC=x$$ and $$BC=15−x$$.
    In right $$Δ OCA$$
    $$sin 30^{0}=\dfrac{AC}{OC}$$
    $$=>\dfrac{1}{2}=\dfrac{x}{15-x}$$
    $$=>2x=15-x$$
    $$=>3x=15$$
    $$=>x=5$$m
    The tree is broken at height of $$5m$$

  • Question 7
    1 / -0
    A person is $$x$$ m away from a tree which is $$10$$m high and angle of elevation of the top of the tree is $$30^o$$, then the value of $$x$$ is 
    Solution
    Here, $$\tan30^o=\dfrac{10}{x}\Rightarrow \dfrac{1}{\sqrt3}=\dfrac{10}{x}\Rightarrow x=10\sqrt3$$

    Therefore, Answer is $$10\sqrt3$$

  • Question 8
    1 / -0
    The angle of elevation of the top of a vertical tower from two points. $$30 \text{ m}$$ apart, and on the same straight line passing through the base of tower, are $$ 30^{\circ}  $$ and $$ 60^{\circ}  $$ respectively. The height of the tower is 
    Solution

    Let $$AB$$ is the tower of height $$h$$, and $$BC$$ equal to $$x.$$

    In $$\triangle ABC,$$
    $$\tan 60^{\circ}=\dfrac{AB}{BC}$$

    $$\Rightarrow \sqrt3=\dfrac{h}{x}$$

    $$\Rightarrow x=\dfrac{h}{\sqrt3}\quad\quad\quad\dots(i)$$

    In $$\triangle ABD ,$$
    $$\tan 30^\circ=\dfrac{AB}{BD}$$
    $$\Rightarrow\dfrac{1}{\sqrt{3}} =\dfrac{h}{(x+30)}$$
    $$\Rightarrow x+30 =\sqrt3 h$$
    $$\Rightarrow\sqrt3 h-30\quad\quad\quad\dots(ii)$$

    From equation $$(i)$$ and $$(ii),$$
    $$\begin{aligned}{}\frac{h}{{\sqrt 3 }} &= \sqrt 3 h - 30\\h &= 3h - 30\sqrt 3 \\2h &= 30\sqrt 3 \\h &= 15\sqrt 3 \text{ m} \end{aligned}$$

    So, height of the tower is $$15\sqrt{3} \text{ m} .$$ 

  • Question 9
    1 / -0
    The shadow of a flagstaff is three times as long as the shadow of the flagstaff when the sun rays meet the ground at angle of $$60^o$$. Find the angle between the sun rays and ground at the time of the longer shadow.

    Solution
    Let the length of the shadow be $$x$$ when it makes an angle of $$60^{0}$$ at point C at the ground and $$3x$$ at an angle of $$\theta$$ at point D.
    Let height of flagstaff be $$h$$
    In right angled $$ ΔABC$$.
    $$tan 60^{0}=\dfrac{h}{x}$$
    $$\rightarrow h=x  tan60^{0}$$ ..............(1)
    In $$ΔBDA$$
    $$tanθ=\dfrac{h}{3x}$$
    $$\rightarrow h=3 x  tan\theta$$   ...............(2)
    From (1) & (2) we get,
    $$x  tan60^{0}=3  x tanθ$$
    $$\rightarrow tanθ=\dfrac{tan60}{3}$$
    $$\rightarrow tan \theta=\dfrac{\sqrt 3}{3}$$
    $$\rightarrow tan\theta=\dfrac{\sqrt 3\times \sqrt 3}{3\times \sqrt 3}$$
    $$\rightarrow tan \theta=\dfrac{1}{\sqrt 3}$$
    $$\rightarrow θ=30^{0}$$

  • Question 10
    1 / -0
    A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height $$h$$. At a point on the plane, the angle of elevation of the bottom of the flagstaff is $$\displaystyle \alpha $$ and that of the top of the flagstaff is $$\displaystyle \beta $$ Then the
    height of the tower is :
    Solution
    Let $$BC$$ be the tower and $$CD$$ be the flagstaff.
    The angle of elevation of the bottom of the flagstaff is $$\alpha $$ and that of the top of flagstaff is $$\beta$$. 
    Let $$h$$ be the height of the tower
    In $$\triangle ABC$$, we have
    $$\Rightarrow \tan \alpha=\dfrac{BC}{AB}$$  ....{i}
    In $$\triangle ABD$$
    $$\Rightarrow \tan \beta=\dfrac{BD}{AB}$$
    $$\Rightarrow \dfrac{BC+h}{AB}=\dfrac{BD}{AB}$$  ....{ii}
    Now dividing {ii} by {i}, we get
    $$\dfrac{BC+h}{BC}=\dfrac{\tan \beta}{\tan \alpha}$$
    $$\Rightarrow (BC+h)\tan \alpha=BC \tan \beta$$
    $$\Rightarrow BC(\tan \beta-\tan \alpha)=h \tan \alpha$$
    $$\Rightarrow BC=\dfrac{h  \tan  \alpha}{\tan \beta- \tan \alpha}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now