Self Studies

Differentiation Test 15

Result Self Studies

Differentiation Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points $$A (2, 9), B (a, 5)$$ and $$C (5, 5) $$ are the vertices of a triangle $$ABC$$ right angled at $$B$$. Find the values of  $$a$$ and hence the area of $$\Delta $$ $$ABC$$.
    Solution
    Given that the vertices of the $$\Delta ABC$$ are $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 2,9 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( a,5 \right) $$ and $$C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 5,5 \right) and \angle B={ 90 }^{ o }$$. 
    So, $$AC$$ is the hypotenuse.
    $$ \therefore$$ by Pythagoras theorem, we have 
    $$ { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$$    .........(i)
    Now, by distance formula 
    $$d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } $$ 
    So, $$AB=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 2-a \right)  }^{ 2 }+{ \left( 9-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-4a+20 } $$, 
    $$BC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 5-a \right)  }^{ 2 }+{ \left( 5-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-10a+25 } $$ and 
    $$AC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 5-2 \right)  }^{ 2 }+{ \left( 5-9 \right)  }^{ 2 } } $$ units $$=\sqrt { 25 } $$ units.
    $$ \therefore$$ by (i), we get
    $${ a }^{ 2 }-4a+20{ +a }^{ 2 }-10a+25=25$$
    $$ \Rightarrow { a }^{ 2 }-7a+10=0$$
    $$ \Rightarrow a=5,2$$ 
    We reject $$a=5$$, since $$B$$ and $$C$$ will coincide in that case and $$\Delta ABC$$ will collapse. 
    So, $$a=2. i.e. AB=\sqrt { { a }^{ 2 }-4a+20 } =\sqrt { 4-8+20 } 3$$ units $$=43$$ units
    $$ BC=\sqrt { { a }^{ 2 }-10a+25 } =\sqrt { 4-20+25 } 3$$ units $$=3$$ units.
    Now,
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Therefore, required area is $$6$$ square units.
  • Question 2
    1 / -0
    The area of triangle ABC (in sq. units) is :

    Solution
    The area of a triangle is given as:
    Area $$=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] $$
    the given points are $$ A(1,3),~B(-1,0) $$and $$C(4,0)$$
    by Substituting ,
    $$\text{Area} =\dfrac { 1 }{ 2 } \left[ 1(0-0)+(-1)(0-3)+4(3-0) \right] \\ =\dfrac { 1 }{ 2 } \left[ 3+12 \right] =\dfrac { 15 }{ 2 } =7.5$$ 
    $$\therefore$$ Area of the given triangle ABC is $$7.5$$ sq. units
  • Question 3
    1 / -0
    Given:   $$\dfrac {20!}{18!}=380$$
    Solution
    $$\cfrac { 20! }{ 18! } =?\\ 20!=20\times 19\times 18\times ........3\times 2\times 1\\ =20\times 19\times (18!)\\ \cfrac { 20! }{ 18! } =\cfrac { 20\times 19\times (18!) }{ 18! } =20\times 19=380$$
    Hence the value matches so the equation is true. 

  • Question 4
    1 / -0
    Area of the triangle formed by the points P(-1.5, 3), Q(6, -2) and R(-3, 4) is 0.
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Given $$P(-1.5, 3), Q(6, -2)$$ and $$R(-3, 4)$$
    Therefore, area is given by
    $$= \frac{1}{2}\times[(-1.5)(-2-4) + 6(4-3)+(-3)(3+2)]$$
    $$= \frac{1}{2}\times(9 +6-15)$$
     $$= 0$$
  • Question 5
    1 / -0
    If $$y^x=x^y$$, then find $$\displaystyle\frac{dy}{dx}$$.
    Solution
    $$y^x=x^y$$

    Taking log on both sides

    $$\Rightarrow$$ $$\log{y^x}=\log{x^y}$$

    $$\Rightarrow$$ $$x\log{y}=y\log{x}$$

    $$\Rightarrow$$ $$\displaystyle x\frac{1}{y}\frac{dy}{dx}+\log{y}\times 1=\frac{y}{x}+\log{x}\frac{dy}{dx}$$

    $$\Rightarrow$$ $$\displaystyle\left(\frac{x}{y}-\log{x}\right)\frac{dy}{dx}=\frac{y}{x}-\log{y}$$

    $$\Rightarrow$$ $$\displaystyle\frac{dy}{dx}=\frac{\displaystyle\frac{y}{x}-\log{y}}{\displaystyle\frac{x}{y}-\log{x}}=\frac{y(y-x\log{y})}{x(x-y\log{x})}=\frac{y(x\log{y}-y)}{x(y\log{x}-x)}$$

  • Question 6
    1 / -0
    If $$y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x$$, then find $$\dfrac {dy}{dx}$$
    Solution
    Here, we have function $$y=x^{-1/2}+\log _5x+\tan  x+2^x$$
    On differentiating w.r.t x, we get
    $$\dfrac {dy}{dx}=\dfrac {d}{dx}(x)^{-1/2}+\dfrac {d}{dx}(\log _5x)+\dfrac {d}{dx} \tan  x+\dfrac {d}{dx}(2^x)$$

    $$=-\dfrac {1}{2}(x)^{-1/2-1}+\dfrac {1}{x \log _e5}+\sec ^2x+2^x \log  2$$

    $$=-\dfrac {1}{2}x^{-3/2}+\dfrac {1}{x\log _e5}+\sec ^2x+2^x\log  2$$
  • Question 7
    1 / -0
    $$\displaystyle\frac{dy}{dx}$$ for $$y=x^x$$ is
    Solution
    $$y=x^x$$
    Taking $$\log $$ on both the sides
    $$\log { y } =\log { \left( { x }^{ x } \right)  } $$
    $$\log { y } =x\log { x } $$
    Differentiate w.r to $$x$$
    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =x\frac { d }{ dx } \left( \log { x }  \right) +\left( \log { x }  \right) \frac { d }{ dx } \left( x \right) $$
    $$\displaystyle \frac { dy }{ dx } =y\left[ \frac { x }{ x } +\log { x }  \right] $$
    $$\displaystyle \frac { dy }{ dx } ={ x }^{ x }\left[ 1+\log { x }  \right] $$
  • Question 8
    1 / -0
    For the function $$f(x) = \displaystyle \frac{x^{100}}{100} + \frac{x^{99}}{99} + ........... + \frac{x^2}{2} + x+1$$, $$f'(1) =$$
    Solution
    $$Given:\cfrac { d }{ dx } (x^{ n })=nx^{ n-1 }\\ \therefore for\; f(x)=\cfrac { x^{ 100 } }{ 100 } +\cfrac { x^{ 99 } }{ 99 } +...............+\cfrac { x^{ 2 } }{ 2 } +1\\ f'(x)=\cfrac { 100x^{ 99 } }{ 100 } +99\cfrac { x^{ 98 } }{ 99 } +.............+\cfrac { 2x }{ 2 } +1\\ Here\; f'(1)=1+1+.........to\; 100term=\; 100\\ Hence\; f(x)=\cfrac { x^{ 100 } }{ 100 } +\cfrac { x^{ 99 } }{ 99 } +...........+\cfrac { x^{ 2 } }{ 2 } +x+1=100$$
  • Question 9
    1 / -0
    If $$y=x^2+sin^{-1}x+log_ex$$, find $$\dfrac {dy}{dx}$$
    Solution
    $$y=x^2+sin^{-1}+log_ex$$
    On differentiating, we get
    $$\dfrac {dy}{dx}=\dfrac {d}{dx}(x^2)+\dfrac {d}{dx}sin^{-1}x)+\dfrac {d}{dx}(log_ex)$$
    or $$\dfrac {dy}{dx}=2(x)^{2-1}+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {d}{dx}(log_ex)$$
    $$\dfrac {dy}{dx}=2x+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {1}{x}$$
  • Question 10
    1 / -0
    A graph may be defined as a set of points connected by lines called edges. Every edge connects a pair of points. Thus, a triangle is a graph with 3 edges and 3 points. The degree of a point is the number of edges connected to it. For example, a triangle is agraph with three points of degree 2 each. Consider a graph with 12 points. It is possible to reach any point from any other point through a sequence of edges. The number of edges "e" in the graph must satisfy the condition
    Solution
    (A) Since every edge connects a pair of points, the given 12 points have to be joined using lines. We may have minimum number of edges if all the 12 points are collinear.
    No. of edges in this particular case 
    $$=12-1=11$$
    Maximum number of edges are possible when all the 12 points are non-collinear. In this particular case number of different straight lines that can be formed using 12 points which is equal to $$^12C_{2}$$
    $$=\frac{12\times 11}{2}=66$$
    Therefore, following inequality holds for "e"
    $$11 \leq e  \leq 66$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now