Self Studies

Differentiation...

TIME LEFT -
  • Question 1
    1 / -0

    Differentiate $$\displaystyle x^{\sin^{-1}x}$$ w.r.t. $$\displaystyle \sin ^{-1}x.$$

  • Question 2
    1 / -0

    If $$y = \displaystyle (\tan x)^{\log x}$$, then $$\cfrac{dy}{dx} = $$

  • Question 3
    1 / -0

    If $$2f\left( \sin { x }  \right) +f\left( \cos { x }  \right) =x$$, then $$\displaystyle \frac { d }{ dx } f\left( x \right)$$ is

  • Question 4
    1 / -0

    Differentiate $$\displaystyle \tan x^{n}+\tan ^{n}x-\tan ^{-1}\frac{a+x^{n}}{1-ax^{n}}.$$

  • Question 5
    1 / -0

    A curve passing through the point $$(1,1)$$ is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:

  • Question 6
    1 / -0

    Differentiate the following: $$\displaystyle \cot ^{-1}\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{\left ( 1+\sin x \right )}-\sqrt{\left ( 1-\sin x \right )}}$$

  • Question 7
    1 / -0

    Let $$ \displaystyle f\left ( x \right ) $$ be defined by $$ \displaystyle f\left ( x \right )=\left\{\begin{matrix}\sin 2x & \text{if } 0< x\leq \dfrac{\pi}6\\ ax+b& \text{if } \dfrac{\pi}6< x\leq 1\end{matrix}\right. $$. The values of $$a$$ and $$b$$ such that $$ \displaystyle f $$ and $$ \displaystyle {f}' $$ are continuous, are

  • Question 8
    1 / -0

    A polynomial $$f(x)$$ leaves remainder $$15$$ when divided by $$(x-3)$$ and $$(2x+1)$$ when divided by $$(x-1)^2$$. When $$f$$ is divided by $$(x-3)(x-1)^2,$$ the remainder is

  • Question 9
    1 / -0

    If $$f\left( x \right) $$ is a polynomial of degree $$n(>2)$$ and $$f\left( x \right) =f\left( k-x \right) ,($$ where $$k$$ is a fixed real number$$),$$ then degree of $$f'(x)$$ is

  • Question 10
    1 / -0

    If for all $$x,y$$ the function $$f$$ is defined by $$f\left( x \right)+f\left( y \right)+f\left( x \right).f\left( y \right)=1$$ and $$f\left( x \right)>0$$, then

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now